

Building Your Linux Firmware
Security Toolkit

Lee Fisher
LinuxFestNorthWest.org

Bellingham.WA.US
2015-04-26

Last Revised: 2015-04-25 22:18

Content licensed: CC by-SA 4.0
http://creativecommons.org/licenses/by-sa/4.0/

Agenda

● History/background
– BIOS, NIST, negative rings of protection

● UEFI architecture (brief)
● Testing/developing UEFI (brief)

– Shell, Python, EDK-II/UDK/EADK, UEFI Apps,
QEMU, MinnowBoard, ...

● Firmware security tools
– BITS, CHIPSEC, FWTS, LUV, LAVA, ...

● More information

Learning Goals

● What open source tools are available to for
diagnosing Intel- and ARM-based Linux
systems.

● Emphasizing UEFI-based system, not focusing
on Coreboot- or BIOS-based systems.

● Focus: UEFI Shell and commands, EDK-II
developer toolchain, CHIPSEC, LUV, FWTS,
BITS, LAVA, a few other EFI security tools.

Prerequirements

● You are a Linux system administrator,
developer, or security researcher.

● You know architectural fundamentals of: Intel
hardware, IBM PC BIOS/OpROM firmware.
ARM hardware also helpful.

● You can use: bash/command.com/cmd.exe
shell(s) and write scripts for them. For more
advanced use, Python and C language skills
are needed.

SECTION: background

Why are we talking about this?

● Bootkits are scarier than Rootkits.
● Firmware-level attacks are invisible, if you are

using the wrong tools, and/or aren't looking for
them.

● Malware authors (and operating system
vendors) are moving components into firmware

● Linux kernel, Installers, 'Pre-OS' tools (eg,
GRUB2), and other FOSS code needs to work
with firmware in a safe manner.

IBM PC BIOS
● A system firmware image (unable to traverse

file systems)
● A non-file-based boot loader stored in first

sector of MBR partition, that loads the boot
loader/OS, which might be a contiguous file
next to MBR, easy to get overwritten if multiple
OSes used on system.

● A collection of OEM/IHV hardware's Option
ROMs (OpROMs), the undefined BIOS 'driver
model'.

● Later BIOSs, with appropriate NICs, support
PXE network boot, for diskless workstations.

Rings of Protection

● Early Intel processor security model:
– Ring 3 (Userspace), user mode, apps

– Rings 2-1 often not used in OS design.

– Ring 0 (Kernelspace), kernel mode, OS
kernel/drivers

● But Ring 0 doesn't cover nuances of HW/FW:
– Physical hardware -vs- virtualization servers with

virtual hardware and firmware.

– Not just '1 CPU', but multiple processors beyond
CPUs, TPM, IPMI, some work when powered-off.

– Systems Mgmt Mode

Negative Rings for Bootkits
● Negative rings are unofficial, not endorsed by Intel or

UEFI Forum. :-)

● Proposed by various security researchers, with
differing definitions. Invisible Things Labs (ITL) uses:

– -1 for VMM

– -2 for SMM

– -3 for HW
● Reverend Bill and others have slight variations, but the

main point is the same: the 0/3 model is insufficient,
and needs to cover FW/HW in more detail.

NIST BIOS Guidelines

● NIST.gov offers guidance on firmware
● 2011: SP800-147:

BIOS Protection Guidelines
● 2011: SP800-155:

BIOS Integrity Measurement Guidelines (Draft)
● 2014: SP800-147B:

BIOS Protection Guidelines for Servers

SP800-147

● Defines best practices for various phases:
Provisioning, Platform Deployment, Operations
and Maintenance, Recovery, Disposition.

● Defines authenticates BIOS update
mechanism, and optional secure local update
mechanism.

● Defines Integrity protection and non-
bypassability features.

SP800-147B

● Expanded 147 model from 'PC' (Basic Server)
to include more complex servers (Managed
Server, Blade Server), with dedicated
management channels, possibly a Service
Processor.

● Service Processor as Root of Trust
● Non-Bypassability of BIOS Protections by

Service Processor
● Added authenticated remote online firmware

update mechanisms, in addition to local
updates.

SP800-155

● Provide the hardware support to Roots of Trust
for BIOS integrity measurements.

● Enable endpoints to measure the integrity of all
firmware components and configuration data
components.

● Securely transmit measurements of BIOS
integrity from endpoints to the Measurement
Assessment Authority.

● Use of Trustworthy Computing security to
augment firmware security, locally (TPM) and
remotely (TNC).

NSA – BIOS Protection Profile
● IAD (Information Assurance Directorate): BIOS

Update Protection Profile, 1.0, 2013

● Common Criteria's Standard Protection Profile (PP) for
PC client devices BIOS firmware (including UEFI).

● “Addresses the primary threat that an adversary will
modify or replace the BIOS on a PC client device and
compromise the PC client environment in a persistent
way.”

● Good background on understanding threats.

● No Validated Products with this PP. :-(

● www.niap-ccevs.org/pp/pp.cfm

SECTION: UEFI architecture

What is UEFI?

● Universal Extensible Firmware Interface
● A complete technical replacement for the

legacy PC BIOS firmware, available for many
systems and architectures.

● Created by Intel, initially to boot their Itanium
systems, called EFI. Mac used it when
switching to Intel. Windows8 requires it.

● Now Unified EFI (UEFI) is controlled by the
UEFI Forum, with Adopter and Contributor
levels.

● uefi.org

The UEFI solution

● A system firmware image (that can traverse
FAT volumes)

● A new GPT partition table format
● A collection of OEM/IHV EFI drivers on

hardware's option ROMs
● A collection of drivers/app/files on special FAT

volume, the "ESP"
● A collection of NVRAM variables that configures

how the system firmware image loads boot
loader/OS.

The boot process: UEFI

● No code in boot sector, code is in UEFI
firmware system image.

● OS code is in “ESP” in \EFI\vendorname
● Firmware has NVRAM environment variables

that point to which vendor file to run.
● Installers add new files to ESP and change

variables.

What is UEFI?

● BIOS was a barebones system loader with
rudimentary interfaces to hardware, for 16-bit
real-mode Intel systems. Useful for MS-DOS,
and init code of later protect mode OSes.

● UEFI is a complex embedded OS, whose driver
models replace the need for any upstream
firmware layer to depend on, and currently acts
as merely a firmware layer for Linux/Windows,
but with no extra OS to load, acts much like a
modern MS-DOS/command.com.

History
● 2000, EFI 1.0 (PI = Platform Interface specs)

● 2001, EFI 1.10 (SCT = test suite)

● 2004, TianoCore (EDK = Efi Dev Kit)

● 2005, UEFI 2.0; UEFI Forum (EDK-II = newer EDK)

● 2006, PI 1.0 (UDK = EDK-II snapshots)

● 2007, UEFI 2.1; EDK 1.01 (UEFI 2.0); SCT (UEFI 2.0);
SCT (PI 1.0); EDK 1.04 (UEFI 2.1, PI 1.0)

● 2008, PI 1.1; EDK 1.05 (UEFI 2.1, PI 1.0); UEFI 2.2;
UEFI Shell 2.0

● 2009, SCT (UEFI 2.1); UEFI 2.3; PI 1.2; EDK-II (UEFI
2.1+, PI 1.0); PI 1.2; EDK-II (UEFI 2.1+, PI 1.0)

● 2010, UDK 2010 (UEFI 2.3+, PI 1.2+)

UEFI Ecosystem

● Chip vendors (Intel, ARM, AMD)
● OEMs (Original Equipment Manufacturers)
● ODMs (Original Device Manufacturers)
● IHVs (Independent Hardware Vendors)
● IBVs (Independent BIOS Vendors)

– Phoenix, AMI, Insyde Software, Nanjing Byosoft, …

● OSVs (Operating System Vendors)
– APPL, MSFT, RedHat, SuSE, Canonical, ...

● ISVs (Independent Software Vendors)
– 'pre-OS' & 'OS-present' apps, UEFI RT svcs, UI, ...

UEFI Forum - security
● UEFI Forum has recently increased their

security presence.
● Security web sites with contacts and other info.
● Started 'EDK-II Security Advisories', PDFs

containing CVE-like vulnerabilities in EDK-II
code, with a TianoCore-Security announce list.
– tianocore.sourceforge.net/wiki/Security

– www.uefi.org/security

– www.uefi.org/revocationlistfile

– tianocore-security@lists.sourceforge.net

– sf.net/projects/edk2/files/Security_Advisory/

UEFI Alternative(s)

● Intel Itanium systems NEED EFI.
● Intel x86/x64 and ARM systems can use either

BIOS, UEFI, or CoreBoot.
– Win8 HW logo entices most OEMs to use UEFI.

● ARM never used BIOS, and can use UEFI if
vendor wants it, but does not require it.

● CoreBoot is used by Google on ChromeBooks.
– See the CoreBootPkg in UEFI for a solution –

recently checked into EDK-II trunk -- that uses
CoreBoot+UEFI, and potentially removes many of
the 'binary blobs' Linux community hates!

CSM, Compatibility Support Module
● CSM adds legacy BIOS support to UEFI systems.

● I don't who creates CSM(s), Intel, one/more IBVs, or
the UEFI Forum. I think it is closed-source, not part of
TianoCore's projects. AFAICT, it is new module that
can be added to the open-source EDK-II build system.

● UEFI-framed classes of systems:

– Class 1: legacy OS only (BIOS, no UEFI)

– Class 2: hybrid system (BIOS and UEFI)
● Complicates OS installers, MBR or GPT, and

OS init code,
– Class 3: legacy-free (UEFI, no BIOS)

● Read 1st edition of Beyond BIOS, it has a CSM
chapter; 2nd edition omits that chapter.

Physical and Virtual HW/FW

● Phyical hardware
– Intel: UEFI is on Intel (x86, x64, and of course

Itanium) hardware

– ARM: 32- and 64-bit hardware has UEFI support

Virtualization software
– QEMU is the best solution for virtualized UEFI (see

dev slides, later)

– VirtualBox has some UEFI support.

– Recently Xen and KVM have support, unclear about
 how good it is.

Partition Table formats

● BIOS: MBR (Master Boot Record)
– Max 4 partitions, 2.2TB disk size limit

● UEFI: GPT (GUID Partition Table)
– More than 4 partitions, 9.4TB disk size limit.

ESP: EFI System Partition

● The ESP (Efi System Partition) is a FAT32-
based partition with all the UEFI-centric files
that aren't part of the main system firmware
image, or baked into device Option ROMs.

● UEFI spec requires BACKSLASHES as path
delimiters.

● Examples:
– \EFI\tools, \EFI\boot(ia32,x64,ia64,arm).efi

● ISVs copy their apps there, IHVs copy their UEFI
drivers. Python is installed there. UEFI Shell normally
installed there.

ESP

● FAT32-based means no security, have to trust
code signing of *.efi files.

● UEFI Forums' ESP Subdirectory Registry
– A list of UEFI Forum vendors who are known to

store files in the ESP, and the name of their
directory. List not enforced in code.

– \EFI\<vendorname>*

– www.uefi.org/specs/esp_registry

PE/COFF-based Terse Executables

● EFI uses Microsoft PE/COFF-based image file
format, not Linux-centric ELF format.

● EFI images called TE (Terse Executable), small
variation to PE (Portable Executable) format.
– Signature is EFI-era's VZ, not MS-DOS-era's MZ.

– Removes some unused tables/segments that
normal PE apps use, that firmware won't need.

● Leverage existing compiler tools's PE support,
then translates to TE at last minute.

● Code signing: executables are signed similar to
Windows' Authenticode.

EBC (Efi ByteCode)
● A bytecode that supports multiple CPU opcode

targets: Intel x86, Intel x64, Intel Itanium.
● Goal: compile to EBC, then IHVs only need

ROM space for 1 driver for all Intel platforms,
instead of 3, less ROM needed, cheaper units.

● Issue: EFI currently only targets Intel hardware
platforms, not all EFI-targetting platforms (eg,
ARM 32- and 64-bit, ...)

● Issue: Intel C Compiler is the only compiler that
targets EBC. ICC is a commercial-only product,
but they do have a Linux edition.

● (I wish GCC and/or LLVM targetted EBC...)

Browser and Forms

● Forms browser, intended to be universal
installer engine for all hardware vendors, can
be reskinned by OEM/ODM.

● Each vendor provides new content (new
form(s)), and browser looks similar to use
between hardware. BIOS boot menu...

● Forms written by vendors, stored in Internal
Forms Representation (IFR), lists of of raw
resources, fonts, strings, images (BMP, JPEG),
forms, and a form language parser. Vaguely
similar to .rc data compiled into .exes.

Driver Models
● UEFI 2.x has dozens of driver/service models.

EFI 1.x had dozens of other driver/service
models.

● EFI drivers were meant to replace existing EFI
drivers, like how an OpROM updates
functionality in the main BIOS. A UEFI
driver/service can filter/impersonate another
EFI driver/service.

● Most UEFI code terminates when OS loads.
Some Runtime Services remain resident and
OS is able to call these, disk/video IO during
OS int, variables for booting.

Driver Models

● UEFI has drivers for
– Initializing system (memory, USB, PCI, ACPI, TPM,

TrustZone, IPMI, SMBIOS, ...)

– Booting from local media (ROM, flash, disk, floppy,
CD, DVD, …)

– Booting from network (NIC, ...)

– Interfacing with user during boot (keyboard, mouse,
…)

● No printer drivers or scanner drivers etc., not
required to boot a system

Driver Models

● PEI Modules and Services
– PEI = Pre-Efi Initialization

– PEI Modules (Drivers)

● DXE Drivers and Services
– DXE = Driver eXecution Environment

● UEFI Drivers and Services
● UEFI 'Pre-OS' Applications

– System tools, boot loaders/managers, like GRUB2,
eLILO, ...

UEFI Services

● UEFI Boot Services
– used by OS loader to transition from FW to OS

kernel (or boot manager, a pre-OS UEFI app)

– ExitBootServices() ends this state, then only
Runtime Services are available

● UEFI Runtime Services
– Services available after ExitBootServices() for

UEFI-aware OSes to consume, instead of BIOS
interrupts.

– virtual memory, time, variables, console i/o, reset,
capsule, memory, event/timer, protocol, image

File System Drivers

● Unlike BIOS, UEFI can traverse file systems,
during init.

● UEFI's ESP must be FAT32.
– Apple ignores FAT-only rule, and has an HFS+

driver with their systems.

● UEFI FAT driver is non-BSD, additional
Microsoft legal restrictions. Binaries are in EDK-
II, sources are on edk2-fatdriver2 project.

● Other companies and projects (eg, VirtualBox,
rEFInd, etc.) have other file systems (UDF,
HFS+, ISO 9660, NTFS, Ext2, etc.)

UEFI Network Stack

● UEFI systems can boot via network (PXE), in
addition to booting via local storage media.

● Can remotely control UEFI systems (even when
powered off) via IPMI. IPMI uses WS-MAN
protocols when used remotely.

● Network stack protocols:
– iSCSI, IPv4 and IPv6, ARP, DHCP (see RFC 5970),

UDP, TCP, PXE, TFTP, IPsec, VLAN, WiFi,
ethernet, CHAP, WS-MAN, Bluetooth, ...

● UEFI Shell commands:
– ifconfig, ping, vlan config, telnet

Testing UEFI’s Network Stack
● Enterprise admins (and end-users) should explicitly

configure IPMI and network use on systems. IPMI is
on laptops, not just high-end servers.

● Evaluate new UEFI systems, sniffing 24x7, wired and
ethernet, powered on and off, w/ and w/o OS, to
determine what the vendor’s firmware might be doing
over a network.

● UEFI speaks WS-Management, CHAP, IPsec, IPMI,
PXE (network boot), and most core IPv4/IPv6 network
protocols, including iSCSI.

User Identity (UID) Drivers

● A credentials provider driver, for user
authentication devices (smartcards, biometrics,
etc.), to control access to network boot, or
booting from secure local media (like some
fancy CryptoStick with UEFI support).

● Used in UEFI for PXE and IPsec, maybe
elsewhere.

Boot Loaders/Managers
● UEFI has a 'Pre-OS application' model, using

UEFI Applications, for apps that run before OS,
mainly boot loaders and OS init code.

● Some of the FOSS EFI-aware boot managers:
– GRUB2

– rEFInd (replaces rEFIt)

– Clover EFI bootloader

– Gummiboot

– XPC EFI Bootloader

– eLILO

● The best information on this: RodsBooks.com

Linux Kernel: EFI stub

● Linux kernel has built-in support for EFI.
● Initially x86, but later ARM too.
● Shell> bzImage console=ttyS0 root=/dev/sdb

initrd=initrd.img
● Both BIOS and EFI boot loaders can still load

and run the same bzImage (kernel image)
● See the CONFIG_EFI_STUB directive for more

information.

Secure Boot
● Secure Boot is an optional build feature of UEFI

2.x, based on signature checks.
● Uses multiple sets of keys

– PK, Platform Key, verified KEKs

– KEK, Key Exchange Keys, Verify db and dbx

– db, Signature Database

– dbx, Forbidden Database

● It can use, but does not rely on TPM.
● See 'Secure Boot on Linux' talk at IDF2013

Linux: Shim

● Shim, a shim loader for Linux
● Workaround to boot Linux on a Win8

SecureBoot system.
● Signed by Microsoft via Linux Foundation.

– linuxfoundation.org/publications/making-uefi-
secure-boot-work-with-open-platforms

● Matthew Garrett
– github.com/mjg59/shim

● See also MachineOwnerKey (MOK)

Linux distributions

● Linux OSVs members of UEFI Forum:
Canonical, SuSE, RedHat

● These days, most large distributions have some
form of UEFI support, including community-
based ones (eg, Debian, Arch, etc. ...even
FreeBSD).

● In addition to Linux, FreeBSD also supports
UEFI

● (I wish Linux OSVs worked with OEMs to get
SecureBoot+Linux working properly on laptops
and desktops, not just high-end servers.)

PI/UEFI States

● UEFI has a 7-state lifecycle:
– SEC, Security

– PEI, Pre-EFI Initialization

– DXE, Driver eXecution Environment

– BDS, Boot Device Selection

– TSL, Transient System Load

– RT, RunTime

– AL, AfterLife

● Next slide's image source: uefi.org.

SECTION: development

● UEFI coding models:
– UEFI Shell scripts

– Python scripts

– Native UEFI applications

– UEFI Shell Applications

– GNU-EFI-based UEFI applications

The UEFI Shell

● The UEFI Shell is the command line interpreter,
used for interacting with UEFI system/drivers,
originally made by EFI driver developers at
Intel, to test their code.

● It works in interactively with users or in batch
mode with scripts, like most modern shells.

● The UEFI Shell replaces the older EFI Shell.
● The UEFI Shell is a UEFI Application.
● Shell is often not exposed/available to user on

most UEFI-based consumer devices.

Shell modularity

● For each architecture, there can be multiple
shells available, depending on how built.

● Like most of UEFI code, can be built for Retail
or Debug builds.

● Profiles: Install1, Debug1, Driver1, Network1
● Support Levels: 0=Minimal, 1=Scripting, 2:

Basic, 3=Interactive
● Vendor can omit some commands, and add

new commands.

Shell console I/O

● Text can be either ASCII or Unicode (UCS-2)
● No readline ability, but can up/down-arrow

through command history
● Regular expressions: only a handful of

expressions (*, ?, and []) supported, barely
better than MS-DOS

● Invalid characters: * ? < > \ / " 0x0001 0x0002

Redirection and Pipes

● Shell supports 'normal' redirection and piping:
– “|”, "<", ">>", "1>>", "2>>", ">", "1>", "2>"

● To force ASCII, instead of Unicode:
– "<a", ">>a", "1>>a", "2>a", "1>a", ">a"

● Can redirect to/from an environment variable,
not just stdin/stdout/stderr/file, or the NUL
file/device:
– ">i" (StdIn), ">o" (StdOut), ">e" (StdErr),

– ">v" (environment variable)

UEFI Shell's commands

alias attrib bcfg cd cls comp connect cp date
dblk devices devtree dh disconnect dmem
dmpstore dp drivers drvcfg drvdiag echo edit
eficompress efidecompress else endfor endif

exit for getmtc goto help hexedit if ifconfig load
loadpcirom ls map memmap mkdir mm mode
mv openinfo parse pause pci ping reconnect
reset rm sermode set setsize setvar shift
smbiosview stall time timezone touch type
unload ver vol

● Most are console, a few (edit, hexedit) are
'curses'-style full-screen character mode.

Variables

● UEFI's Variables runtime service are vaguely
like to 'environment variables' of Unix/MS-DOS:
key/value string pairs, ...but a lot more complex.

● Some usage is like 'environment variables', like
UEFI Shell's use. Others are NVRAM-based
firmware config settings, others are used on for
FW/OS handoff.

Variables

● Besides name/value strings, each variable also
has a GUID, and multiple attributes (eg, if it
persists boots, when it can be used).

● In UEFI Shell, variable usage uses MS-DOS
style %foo% substitution, not Unix style $foo.

● UEFI Shells PATH is semicolon-separated,
using absolute or relative paths
– ".\;\efi\tools\;\efi\boot\;\"

Variables

● Common UEFI Variables
– Lang, PlatformLangCodes, PlatformLang, ConIn,

ConOut, ErrOut, ConInDev, ConOutDev,
ErrOutDev, Timeout, Boot####, BootOrder,
BootNext, BootCurrent, Driver####, DriverOrder

● Common UEFI Shell-specific Variables
– Path, Cwd, DebugLastError, LastError, Profiles,

ShellOpt, ShellSupport, UefiShellSupport,
UefiVersion, UefiShellVersion

Shell Scripts

● UEFI Shell supports shell scripts, in addition to
to interactive user input

● Similar language to MS-DOS command.com
(for, if, echo, pause, goto, pause, shift), except
that FOR and IF have ends (endFor, endiIf).

● UEFI Shell scripts have .ns extension, not .bat.
● Command line has 10 viewable args, %0 - %9,

use SHIFT to see others, 256 maximum.
● Shells can invoke other shells, exit returns to

parent. Errors returned in %lasterror%.

Startup.nsh

● Startup.nsh
● Shell's init script
● Similar to MS-DOS command.com's

autoexec.bat.
● Shell looks for it in multiple locations: in dir

where shell image was launched, or in PATH.
● Shell is only run: if available, if built with needed

Level and Profile, and if invoked with args to
permit this access.

Python

● Intel maintains a port of CPython 2.7x, ported to
a UEFI Shell Application.

● To use it, you must read the readme: to build it,
and learn what modules are available, and
where files are located, and other caveats.

● But once installed, easy to use Python on EFI!
● Intel's CHIPSEC tool is Python-based, and

works under EFI (as well as Linux and
Windows), their user docs on getting Python
working using UEFI is probably current the best
available.

Styles of UEFI Applications

● Native UEFI Apps
● UEFI Shell Apps

– Shell provides libraries for File I/O, etc.

● EADK Apps
– EADK provides some C Std Lib (LibC) support for

EFI

UEFI Applications

● Native UEFI Applications use the same API as
drivers/services, except they exit when done.

● Examples: Forms Browser, Boot Loader, Shell
● UEFI Applications don't rely on any shell

interfaces, just ConIn/ConOut/ErrOut.
● GNU-EFI toolchain also targets these, but has

different init code than EDK-II toolchain-based
apps.

UEFI Shell Applications

● UEFI Shell Applications have richer libraries
than native applications – mostly File I/O
instead of just stdio/stdout/stderr – and follow
input/help conventions that shell/user
presumes.

● Shell applications are separate binaries in the
ESP, external to the shell binary.

● Examples: cls.efi, eficompress.efi, ping.efi

UEFI Shell Applications

alias attrib bcfg cd cls comp connect cp date
dblk devices devtree dh disconnect dmem
dmpstore dp drivers drvcfg drvdiag echo edit
eficompress efidecompress else endfor endif

exit for getmtc goto help hexedit if ifconfig load
loadpcirom ls map memmap mkdir mm mode
mv openinfo parse pause pci ping reconnect
reset rm sermode set setsize setvar shift
smbiosview stall time timezone touch type
unload ver vol

UEFI Shell App: hello world

#include <Uefi.h>

#include <Library/UefiLib.h>

#include <Library/DebugLib.h>

#include <Library/ShellCEntryLib.h>

INTN EFIAPI ShellAppMain(

 IN UINTN Argc, IN CHAR16 **Argv)

{

 Print(L"Hello, EFI world!\n");

 return 0;

}

UEFI toolchains
● Legacy:

– EDK (Efi Dev Kit): replaced by EDK-II

– EFI Toolkit: legacy EDK-based app dev kit,
replaced by EADK.

● Current:
– EDK-II: replaced EDK

– UDK (Uefi Dev Kit): snapshot releases of subsets of
EDK-II trunk.

– EADK (Efi App Dev Kit): contained within EDK-II.
Like EDK did with EFI Toolkit.

– EDK2-Buildtools: the tools used to build the EDK-II

● Alternative: GNU-EFI (limited use)

UDK/EDK-II

● EDK-II is the trunk project.
● UDK is a snapshot of some TianoCore projects,

mostly EDK-II, and some documents, as a
single ZIP.

● EDK-II/UDK can build system firmware images,
standalone *.efi drivers or applications.

● EDK-II/UDK includes EADK as a module.
● UDK2010 means it uses 2010-era UEFI specs.
● UDK targets Windows. For Linux, EDK-II trunk

is generally more useful.

EADK

● EADK: EFI Application Development Kit
● The EADK provides subset of C Standard

Library, to make it easier to port C apps to UEFI
Apps.

● Tries to conform to "C 95 spec", ISO/IEC 9899-
1990 C Language Standard with Addendum 1,
plus also includes system calls, defined in
sys/EfiSysCall.h and/or unistd.h, and sockets.

● Eg: Cpython 2.7x ported to EFI using EADK.

TianoCore.org
● TianoCore.org is UEFI Forum's front-end to the

multiple TianoCore projects hosted on
SourceForge.net.
– edk2.tianocore.org maps to edk2.sf.net

● Main project: edk2 (aka EDK-II), and occasional
UDK snapshot releases

● Many other projects (esp. edk2-buildtools, and
edk2-fatdriver2), ...and multiple other legacy
EDK-I-era ones.

● Most of the code is BSD-licensed.
● Code uses Subversion; there is a Github mirror.

EDK-II build environment

● EDK-II uses a unique build environment.
● Uses a config file that has definitions for all

supported toolchains; you can add new ones.
● Supports GCC, LLVM, Microsoft C (Pro, not

Express), Intel C, ARM's C Compiler.
● Builds for Debug/Retail targets, like Windows

kernel/DDK/SDK model.
● Intel C Compiler (commercial) is the only one

that targets the EFI ByteCode (EBC).

EDK-II Build tool: Build
● EDK-II doesn't use Make, CMake, etc, there is

a new build tool called Build, which invokes C
compiler and other tools.

● Build has multiple config files, with a spec for
each one:
– Build Spec, INF, FDF, DSC, DEC, VFR, PCD

– sf.net/projects/edk2/files/Specifications

● Example: building the EADK samples for x64.

cd ~/fw/edk2

./edksetup.sh

build -a X64 -p AppPkg/AppPkg.dsc

EDK-II: developer tools

● Besides Build, there are many specialty tools
available in the UDK, many called by Build,
some are useful for security research:

BootSectImage BPDG EfiLdrImage EfiRom
GenBootSector GenCrc32 GenDepex GenFds
GenFfs GenFv GenFw GenPage
GenPatchPcdTable GenSec GenVtf
LzmaCompress PatchPcdValue Spd2Dec Split
TargetTool TianoCompress Trim UPT VfrCompile
VolInfo

GNU-EFI
● An alternative toolchain for creating UEFI

Applications
● Translates ELF binaries to UEFI PE+ TE

images; see docs for limitations.
● Uses GCC tools, no Intel or Microsoft

compilers; only works on UNIX systems.
● Uses GNU Make, not EDK-II's build.
● Study and the rEFIt/rEFInd build notes for

working examples of using GNU-EFI.
● sf.net/projects/gnu-efi

OVMF
● Open Virtual Machine Firmware - A system

firmware image, as built by EDK-II/UDK build
output, that can be read by QEMU.

● OVMF is also the name of the EDK-II module.
Use the EDK-II (or UDK) to build your own. You
can build with debug tracing enabled, or with
full source-level debugging.

● Useful if you want to explore Linux init and use
of UEFI Runtime Services.

● Besides QEMU, apparently Xen and KVM have
recently added support! VirtualBox has some
EFI support as well.

MinnowBoard
● minnowboard.org
● Intel Atom-based, Linux-based dev platform for

hackers/hobbyists of both UEFI and Yocto.
● MUCH cheaper than Tunnel Mountain board.
● Not as capable as Tunnel Mountain.
● Original MinnowBoard out-of-print, these days it

is the Minnow MAX, single or dual core.
● Useful box for developing CHIPSEC modules

(you can update firmware and test your
modules).

Tunnel Mountain

● A pre-assembled Intel UEFI Dev board that lets
you re-flash the system BIOS.

● Dev Platform (DevPlt), 3 kinds.
● ICE(sp)-enabled, if you have $nnK to spend on

an Arium ICE and debugger.
● www.tunnelmountain.net
● Located in Bellevue, WA, at HDNW/CompStop
● Uses a DediProg.com device for flashing
● uefidk.com

Intel UDK Debugger Tool

● Intel UEFI Development Kit (UDK) Debugger
Tool

● Intel-specific debugger solution, that requires
Tunnel Mountain dev platform.

● Uses GDB on Linux, Windbg on NT, not
supported on Mac OS x (or FreeBSD).

● Needs proper debug cables to talk between two
systems.

● Next image, source: www.intel.com/udk

ARM: BeagleBoard

● The EDK-II initially only supported Intel targets.
The first ARM target was the BeagleBoard, a
32-bit ARM dev board.

● See EDK-II's BeagleBoardPkg module
● See-Also: Linaro dev boards, which has a fork

of EDK-II for newer ARM dev boards, which are
not yet supported in EDK-II trunk.

ARM and Linaro
● Linaro has a fork of TianoCore which they focus

on their ARM-centric toolchain.
● EDK-II has fewer ARM dev boards targets

supported.
● Linaro systems also often have a complete

QEMU solution for that board.
● The hobbyist-level boards include Pandas,

Beagles, and Origen.
● Linaro.org
● ARM has a Community Edition of their Eclipse-

based DS-5, for GUI firmware emulation/dev.

UEFI Boot Disk(s)
● AFAIK, there are 2 kinds of UEFI Boot disks.

● One is for BIOS-based systems. Using DUET, you
can boot into a UEFI environment. See EDK-II's
DuetPkg readme for more information.

● Another is for UEFI-based systems, usually with
Secure Boot disabled. Partition thumbdrive using
GPT, with a FAT32 drive, with a “\EFI” subdirectory
setup like a normal ESP would be, with UEFI Shell in
it's proper directory for the appropriate architecture(s).
Useful if the OEM didn't provide UEFI Shell in their
system.

● Being able to directly boot into UEFI is helpful,
sometimes Linux (or Windows) gets in the way of
HW/FW exploration. See-also: BITS and CHIPSEC.

SECTION: test tools

SCTs

● Self Certification Test (SCT)
● UEFI Forum's test suites, for PI and UEFI

protocol conformance.
● Created by Intel.
● Linaro has ARM-centric fork.
● Older EDK-I-era SCTs are on TianoCore.org.
● Current EDK-II-era SCTs are only given out in

binary form, in occasional drops, to public. UEFI
Forum members have current trunk access.

BITS

● BIOS Implementation Test Suite (BITS)
● Intel-based project, created by Burt and Josh

Triplett
● biosbits.org
● A bootable pre-OS environment for testing

BIOSes and their initialization of hardware
● Enables access to EFI data structures, BIOS

data structures, ACPI, CPU, PCI, PCIe, in 32-
bit ring 0 w/o any OS to hinder you.

BITS

● Useful to check if BIOS is configured as Intel
recommends, or for HW/FW research.

● It has batch and interactive (GRUB menu,
interactive console, Python console) modes.

● Now includes Python, and exposes modules for
many things

● Was BIOS-centric, but as of build 945, BITS
also has EFI support

BITS - booting

● Builds for either 32-bit BIOS or 32-bit EFI.
● 64-bit EFI is planned for future release.
● Releases a .iso that boots on 32-bit BIOS or 32-

bit EFI systems.
● Boots via the standard BIOS. Does not support

native EFI booting; boot via the CSM.

BITS - feature categories

● Validate
– run test suites to verify recommendations

● Configure
– override BIOS using Intel reference code

● Explore
– experimental tools and information gathering

Image source: http://biosbits.org/screenshots

Image source: http://biosbits.org/scripting

BITS Python EFI HelloWorld

import bits, efi

greeting = efi.encode_UCS2_mem("Hello
world!\r\n")

efi.call(efi.system_table.ConOut.OutputString,

 efi.system_table.ConOut._addr,

 bits.memory_addr(greeting))

FWTS

● FirmWare Test Suite (FWTS)
● Command line use, batch and interactive
● Created around 2010 by Canonical for Ubuntu

QA
● Fwts are a package of tools you can install on

an existing Ubuntu system.
● Test harness in C++, with many tests, and an

optional curses-like user interface.
● Has both BIOS and UEFI tests.

FWTS

● Useful to help find interesting Linux kernel
warnings from firmware.

● launchpad.net/~firmware-testing-team
● fwts-announce@lists.ubuntu.com
● wiki.ubuntu.com/Kernel/Reference/fwts

FWTS-live

● Bootable USB image with Ubuntu and FTWS
pre-installed, autoruns the curses-based menu
UI for FWTS.

● Logs saved on USB for later review.
● wiki.ubuntu.com/HardwareEnablementTeam/Do

cumentation/FirmwareTestSuiteLive

Image source: https://wiki.ubuntu.com/Hardware

Image source: https://wiki.ubuntu.com/Hardware

CHIPSEC

● Platform Security Assessment Framework
● “CHIPSEC is a framework for analyzing security

of PC platforms including hardware, system
firmware including BIOS/UEFI and the
configuration of platform components. It allows
creating security test suite, security assessment
tools for various low level components and
interfaces as well as forensic capabilities for
firmware”

● github.com/chipsec/chipsec
● chipsec@intel.com

mailto:chipsec@intel.com

CHIPSEC

● A Python-based open source project targetting
hardware/firmware security researchers.

● Contains two top-level programs
– chipsec_utils.py, a collection of small tools to look at

a specific FW/HW resource, for doing research

– chipsec_main.py, a modular test harness, and a
collection of existing security tests.

● python chipsec_main.py --help
● python chipsec_util.py --help

CHIPSEC

● The CHIPSEC python module can be run from
a Python interactive shell, or used in other
Python scripts. Example:

import chipsec_main

chipsec_main._cs.init(True) # if chipsec driver is not
running

chipsec_main.load_module('chipsec/modules/comm
on/bios_wp.py')

chipsec_main.run_loaded_modules()

CHIPSEC - targets

● Intel UEFI Linux system usage types:
– Install CHIPSEC OS driver, and use CHIPSEC.

– Boot a Linux LiveCD with CHIPSEC installed (such
as LUV-live), use CHIPSEC.

– Boot a 'UEFI boot disk', boot into UEFI Shell, use
CHIPSEC.

● Intel FreeBSD/MacOSX/Android system:
– Boot a Linux LiveCD with CHIPSEC installed.

Image source: CHIPSEC documentation

CHIPSEC – some modules

● common.smm: SMRAM locking

● common.bios_kbrd_buffer: IOS keyboard buffer
sanitization

● common.smrr: SMRR configuration

● common.bios_wp: BIOS protection

● common.spi_lock: SPI Controller locking

● common.bios_ts: BIOS interface locking

● common.secureboot.keys: Secure Boot keys

● common.secureboot.variables: Secure Boot variables

CHIPSEC-util examples
● Live

– chipsec_util.py spi info

– chipsec_util.py spi dump rom.bin

– chipsec_util.py spi read 0x700000 0x100000 bios.bin

– chipsec_util.py uefi var-list

– chipsec_util.py uefi-var-read db D719B2CB-3D3A-
4596-A3BC-DAD00E67656F db.bin

● Offline
– chipsec_util.py uefi keys PK.bin

– chipsec_util.py uefi nvram vss bios.bin

– chipsec_util.py uefi decode rom.bin

– chipsec_util.py decode rom.bin

CHIPSEC

● Their user docs are good for installation and
general use. Their security conference
presentations are even better at describing the
specifics of each vulnerability and how to test it.
Read all of their post-conference slides, in
addition to normal docs, RuxCon 2014,
BlackHat 2014, CanDecWest 2014, etc.
– RuxCon 2014 BIOS Attack Summary pdf

– https://cansecwest.com/slides/2014/Platform%20Firmware
%20Security%20Assessment%20wCHIPSEC-csw14-final.pdf

– https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-
Bulygin-CHIPSEC-Slides.pdf

CHIPSEC - enterprise caveat

● CHIPSEC uses a kernel driver on Linux (or Windows,
even with UEFI usage) to provide their HAL.

● The CHIPSEC team warns to NOT use the CHIPSEC
driver on operational systems, as the driver allows
user mode access to HW resources and may allow
malware to access privileged hardware resources. See
their warnings.txt for more info. It should only be used
in test environments.

● Using CHIPSEC w/o a driver on local OS means
rebooting into a Linux live CD, which has other
issues...

CHIPSEC - Initial enterprise use

● Look at CHIPSEC results when evaluating
possible systems for purchasing.

● SAVE the test logs for later use!
● SAVE a binary copy of your BIOS image.
● CHIPSEC test results should help you

understand whether certain attacks have been
mitigated, useful to know before paying for
expensive hardware.

● Varies due to relationships with the vendor and
the ability to obtain/install BIOS updates.

CHIPSEC - Ongoing enterprise use

● Look at CHIPSEC results after any kind of
security event, losing physical control of a
laptop or getting infected by malware, etc.

● After security event, compare CHIPSEC test
results from earlier logs for differences, or if
there is some change in a portion of the SPI
flash image. Eg, if SPI flash protections were
enabled before you lost physical control of the
laptop but disabled afterward.

● Parse the SPI flash image with "chipsec_util.py
decode" to do forensics on deltas.

CHIPSEC: patches wanted

● CHIPSEC team is interested in patches from
Linux and open source community. Ports to
other archs/OSes, new tools (eg, fuzzers) that
use CHIPSEC.

● For Linux, increased access to interesting
kernel data structures from CHIPSEC, to
enable more interesting tests and useful reports
on Linux.

● A FreeBSD port would also be nice.

LUV (Linux UEFI Validation)

● Linux UEFI Validation (LUV, LUVos, luvOS)
● A “Linux-readiness" distribution based on

Yocto, from Intel
● “LUV also provides tests in areas not previously

available, such as the interaction between the
bootloader, Linux kernel and firmware.”

● “This integrated solution is invaluable when testing
components that require cooperation across multiple
runtime phases. It allows the luvOS to test whether
UEFI capsules work correctly across a reboot, for
instance.”

LUV coverage

Image source: LinuxCon 2014 talk by Brian Richardson (Intel) and
Alex Hung (Canonical), “UEFI Test Tools for Linux Developers”

LUV

● Contains FWTS, CHIPSEC, BITS, and other UEFI-
centric HW/FW QA tools.

● Fork of Yocto’s Poky, which includes the meta-luv
layer, intended to make it easy to build LUV,
everything in a single Git repo. Meta-luv contains all of
LUV’s additional features. You can use this package in
your own Yocto-based distro. Or you can use their
LUV-live (next slide)

● Community: Git hosted code and issue tracking,
mailing list, IRC.

● 01.org/linux-uefi-validation

LUV-live

● A Yocto-based live-boot style distro for LUV.
● Recently includes Secure Boot support.
● If you have a local build setup, you can build a

fresh live solution with the latest BITS,
CHIPSEC, FWTS, etc. and add your own tests.

LAVA
● Linaro Automated Validation Architecture (LAVA)
● “A continuous integration system for deploying operating

systems onto physical and virtual hardware for running
tests. Tests can be simple boot testing, bootloader testing
and system level testing, although extra hardware may be
required for some system tests. Results are tracked over
time and data can be exported for further analysis.”

● LAVA has 2 components, the lava-server (Django web
app) and the lava-dispatcher.

● Useful for updating firmware and doing “Pre-OS” app
tests on devices which're supported by LAVA.

● Targets QEMU, not only physical ARM hardware.

● validation.linaro.org/

● wiki.linaro.org/LAVA%20Team%20wiki%20page

Other Tools

● FlashROM and other tools from Coreboot.org
● There are dozens of small UEFI security tools,

most on Github. Samples:
– EFIPWN, github.com/G33KatWork/EFIPWN

– Ida-efiutils, github.com/snarez/ida-efiutils

– EFInject, bitbucket.org/troeger/efinject

– FMK, firmware-mod-kit.googlecode.com

– UEFITool, github.com/LongSoft/UEFITool

– Universal-IFR-Extractor,
github.com/donovan6000/Universal-IFR-Extractor

– Binwalk, github.com/devttys0/binwalk

– Sign Search, freecode.com/projects/signsrch

SECTION: more info

Professional Firmware Help?

● Firmware Security Firms I know about:
– Invisible Things Labs (security)

– LegbaCore (security)

– UEFI Forum ISVs (development)

● Others?

More Information

● Harnessing the UEFI
Shell
– Michael Rothman, Tim

Lewis, Vincent
Zimmer, Robert Hale

– Intel Press, 2009

– The main book on
using the UEFI Shell.

More Information

● Beyond BIOS, 2nd Ed.
– Vincent Zimmer,

Michael Rothman,
Suresh Marisetty

– 2012, Intel Press

– The main book on
UEFI architecture and
development.

– 1st ed has chapter on
CSM.

More Information
● UEFI Forum

– uefi.org
● The UEFI specifications, and security web page
● Members have access to more lists and security working

groups.

– tianocore.org
● The source code, and mailing lists, esp. edk2-devel
● The 'EDK-II Security Advisories” PDFs announced on the

“TianoCore-Security” list
● tianocore.sourceforge.net/wiki/Security
● www.uefi.org/security
● tianocore-security@lists.sourceforge.net
● sf.net/projects/edk2/files/Security_Advisory/

More Information
● Intel.com

– UEFI content, and Intel-centric HW/FW content...

● Intel CHIPSEC documentation
– INVALUABLE to understand the various known

firmware exploits covered in their modules.

● Intel SSG's UEFI training courseware/labs
– Slides and labs for Intel's 3-day internal training are

publicly available. Small amount of Linux content.

– sf.net/projects/edk2/files/Training/TrainingMaterial/

● Intel web-based, Flash-centric training
– sf.net/projects/edk2/files/Training

More Information

● Linux-efi mailing list on vger.kernel.org
● Linaro.org UEFI and Validation (LAVA) mailing

lists.
● LUV mailing list
● FWTS mailing list
● Rods Books's web site on EFI boot loaders

– rodsbooks.com

More Information
● Blog of Vincent Zimmer (Intel)

– vzimmer.blogspot.com

● Blog of Tim Lewis (Phoenix)
– uefi.blogspot.com

● Blog of James Bottomley (Parallels)
– blog.hansenpartnership.com/author/jejb

● Blog of Matthew Garrett (Red Hat)
– mjg59.dreamwidth.org

● Microsoft UEFI OEM Requirements
– www.microsoft.com/whdc/system/platform/firmware/uefireg.mspx

More Information

● LinuxCon North America August 2014
– Series of Linux-centric, UEFI-centric training

presentations

● NIST SPs and IAD PP with BIOS guidance
● InfoSec conferences (DefCon/BlackHat,

RuxCon, ReCon, ...)

Summary

● Learn to use CHIPSEC, LUV, FWTS, BITS,
maybe LAVA

● Run CHIPSEC/FWTS, perhaps via LUV-liv,
save logs and FW image, track changes over
history.

● Track EDK-II Security Advisories
● Track CHIPSEC for new vulnerabilities.
● Track new HW/FW exploits at security

conferences

CREDITS

● Thanks to John, Vincent, Yuri, the edk2-devel
list, Black Lodge Research, DC206, Intel and
UEFI Forums’ tech writers.

● Thanks to UEFI Forum for making
specifications publicly available (again)!

● Especially thanks to John for enterprise
CHIPSEC usage guidance!

End of Slides (!!)

● Questions?
● Discussion...

– What tools did I omit?

– …

● Thanks for attending!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

