

Doc Like an Egyptian

Dru Lavigne
Documentation Lead, iXsystems
LFNW April 23, 2016

All the old paintings on the tombs,
They do the sand dance, don't you know?

If they move too quick (oh whey oh),
They're falling down like a domino.

Walk Like an Egyptian, The Bangles

Outline

Introduction to Sphinx as part of an open source
documentation solution

Disclaimer: based on my experiences. While
from an open source perspective, discussion
also applies to proprietary documentation.

In Theory: Docs...

 are published with each software release,

 in multiple formats which suit the needs and devices of that
 software's userbase,

 in multiple translations which match that software's global
 audience,

 and are grammatically and technically correct.

In Reality...
docs are incomplete or outdated (assuming they even
exist,

docs are given lower priority than code,

noone wants to write docs / noone reads docs anyways,

no perfect doc management solution exists.

Incomplete/Outdated Docs

Software is a MOVING target

Outdated, unversioned docs are worse than no docs

Need process for versioning and archiving docs, and
for finding the correct docs for each software version

I Get No Respect Around Here

 Cultural issue: docs are as important as code and
 Q/A and users actually want useful docs

 Gently point users to the pertinent section of the
 docs and create bug reports or doc updates

Finding the “Perfect” Tool

Is its formatting language easy to learn or
a significant barrier to entry?

Are syntax editors available?

Does it support the required formatting?

Finding the “Perfect” Tool

1st Law of Doc Tools: the number/quality
of outputs is inversely proportional to the
ease of the markup language.

2nd Law of Doc Tools: the fewer the doc
maintainers, the higher the number of desired
outputs.

Example: doc/odt

Good: WYSIWYG editor available to any
author

Bad: templates are painful; difficult to
collaborate; outputs are limited

Example: wiki

Good: entry barrier fairly low and syntax quick to
learn

Bad: no concept of ToC, content flow, or versioning;
limited outputs

If you build it, they don't necessarily come (except
for the spambots)

Example: Latex

Good: rich formatting language; multiple
outputs integrate well into build and
translation systems

Bad: very high barrier to entry as it takes a
dedicated time (and interest) commitment
to learn (and teach) the formatting language

Sphinx Features

Relatively easy-to-learn formatting language
that upports many outputs: HTML, PDF, ePUB,
LaTeX, Texinfo, man pages, txt, API docs, etc.

Provides a number of extensions such as
auto-numbered figures

Sphinx Features

Automatic generation of ToC, index,
glossary

Source files are text and easily integrate
into existing revision control, translation,
build, and CI infrastructures

Sphinx Features

Fully customizable conf.py for controlling
doc layout

Several useful built-in builders (e.g. link
checker)

Sphinx Features

Several built-in themes and support for
custom themes; layout fully customizable
using CSS

Anything can be linked (figures, keywords,
headings, etc.)

Sphinx Features

Writers can use any text editor on any
system with Python installed (or issue git
pull requests)

Sphinx Limitations

Some odd formatting limitations require
CSS workarounds (e.g. bold italic)

Documentation is limited, assumes you are
familiar with Python, and needs more
usage examples

Converting Docs

Open source conversion utilities exist for
most formats

Experiment by converting a small doc
containing required formatting

Expectations

Will you be versioning docs or only
creating the latest and greatest?

What outputs are required? Versioned
PDFs? HTML on project page? Built into
software itself as a help system?

Source Repo

Determine the doc versioning system and
layout of .rst files

Update the README with instructions
for authors to create their own doc build
environment or how to create pull requests

Create a Cheat Sheet

Include a list of formatting tags and
conventions used by your docs as well as
any gotchas to help new authors
quickly get up-to-speed

Publish the cheat sheet (or include in
README) in doc repository

Review What's Available

Spend some time playing with conf.py and
experiment with existing themes BEFORE
writing new docs as themes affect layout

Review available extensions and determine
if CSS customization is required

Resources & Examples

http://sphinx-doc.org

http://pootle.translatehouse.org

github.com/pcbsd/pcbsd/tree/master/
src-qt5/docs

github.com/pcbsd/sysadm/tree/master/api

http://sphinx-doc.org/
http://pootle.translatehouse.org/

Questions?

Contact

dru@freebsd.org

URL to slides

http://slideshare.net/dlavigne/lfnw2016

mailto:dru@freebsd.org

http://lfnw.org/node/3925

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

