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Hi, I'm John.

a/k/a @genehack
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VP, Tech

Infinity Interac,ve
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Now that I've been promoted into a management 
position, I don't get to do all that much coding anymore.
When I do end up with a coding project, Sammy helps 
me out from her cushion under my desk

This is
my dog,
Sammy
a/k/a @sammyGenehack
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who's heard of JWTs before this talk?
who's using JWTs?

So, what's
a JWT?
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jwt.io
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Sadly, Sammy suffers from the horrible disease RSF -- 
Resting Stoned Face

What
Does
That
Even
Mean
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Holy RFCs, Batman

• RFC 7519 - JSON Web Token (JWT)
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It turns out, it's not just RFC7519 you need to worry about...

Holy RFCs, Batman

• RFC 7515 - JSON Web Signature (JWS)

• RFC 7516 - JSON Web Encryp?on (JWE)

• RFC 7517 - JSON Web Key (JWK)

• RFC 7518 - JSON Web Algorithms (JWA)

• RFC 7519 - JSON Web Token (JWT)

• RFC 7520 - Examples of Protec?ng Content Using JSON Object 
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Sammy found these 
RFCs

a bit …dry
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Think of JWTs as…

• A lightweight alterna.ve to cookies (kinda, sorta)

• ...that also works with CLI, mobile, or even desktop apps

• An authoriza.on or access control mechanism

• ...kinda like OAuth but without losing the will to live

• Cross-domain friendly
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Made of stuff you already know

• Plain ol' JSON Objects (POJOs)

• Stringified, encoded, and cryptographically signed

• Transmi@ed over HTTP(S)
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Dot-delim
Three parts...
Let's look at each of these three parts 
in a bit more detail

What do they look like?

• dot-delimited string ('.')

• 3 parts

• header

• payload

• signature

• Example: xxx.yyyyy.zzz
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JWT teardown: header

• Plain ole JSON object

• Base64 encoded

• Typically metadata, such as token type and signing algorithm

{
  "alg": "HS256",
  "typ": "JWT"
}
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JWT teardown: payload

• Another Base64-encoded POJO

• Contains "claims" – just key-value data

• Types of keys: reserved, public, private

{
  "name": "LinuxFest Northwest",
  "admin": false,
  "iat": 1488562999
}
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JWT teardown: signature

• Encoded header POJO, plus

• Encoded payload POJO, plus

• A secret, plus

• Signing algorithm from header alg key
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I'm going to be showing a fair amount of code in this talk -- maybe a bit too much 
code -- but I really wanted to drive home how simple and elegant JWTs are, and 
showing how they actually work on a code level is the best way to do that, IMO
In real practice, you'd almost certainly be using a library for most of the code I'm 
showing, but since the point is how uncomplicated most of these operations are, I 
wanted to give you some idea of what was happening inside that code
For each code sample, I'm going to show the whole code sample -- and it's going to 
be way too small to read. I'm doing that just so you can see, it's really not that much 
code. We'll then step through each one in much smaller 3 or 4 line chunks.

A word about my 
code samples
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Making a JWT
function base64EncodeJson (pojo) {
  var jsonString = JSON.stringify(pojo);
  var encoded    = new Buffer(jsonString).toString("base64");
  return encoded;
}

function hmacIt (string, secret) {
  var hmac = crypto.createHmac("sha256" , secret);

  hmac.update(string);

  var signature = hmac.digest("hex");

  return signature;
}

var header = {
  "alg": "HS256",
  "typ": "JWT"
};

var payload = {
  "name": "LinuxFest Northwest",
  "admin": false,
  "iat": 1488562999
};

var secret = "be wery, wery qwiet, we're hunting JWTs";

var encodedHeader  = base64EncodeJson(header);
var encodedPayload = base64EncodeJson(payload);

var signature = hmacIt(encodedHeader + "." + encodedPayload, secret);

var jwt = encodedHeader + "." + encodedPayload + "." + signature;
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Helper func+ons

function base64EncodeJson (pojo) {
  var jsonString = JSON.stringify(pojo);
  var encoded    = new Buffer(jsonString)
                     .toString("base64");
  return encoded;
}
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Helper func+ons

function hmacIt (string, secret) {
  var hmac = crypto.createHmac("sha256" , secret);

  hmac.update(string);

  var signature = hmac.digest("hex");

  return signature;
}
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The actual data
var header = {
  "alg": "HS256",
  "typ": "JWT"
};

var payload = {
  "name": "LinuxFest Northwest",
  "admin": false,
  "iat": 1488562999
};

var secret = "be wery, wery qwiet, we're hunting JWTs";

JWTs WIYL! - LFNW 2017 – 6 May 2017 – @genehack 21



Really genera*ng the signature
var encodedHeader  = base64EncodeJson(header);
var encodedPayload = base64EncodeJson(payload);

var signature = hmacIt(
  encodedHeader + "." + encodedPayload,
  secret
);

var jwt = encodedHeader
        + "." + encodedPayload
        + "." + signature;
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Hand-rolled, ar,sanal JWT
console.log(jwt);

'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJuYW1lIjoiTGludXhGZXN0IE5vcnRod2VzdCIsImFkbWluIjpmYWxzZSwiaWF0IjoxNDg4NTYyOTk5fQ==.
3e87e3e7a2d1614193ed308b666bda51a55aeec8c8af2374d32041f7b61130b7'

Key bit:

The signature means you can detect any a2empts to modify the 
header or the payload.
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Valida&on
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Valida&on
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Valida&on
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Valida&on
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Libraries for DAYS
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Frequently more than 1 library for a given platform, with 
varying degrees of support

Libraries for DAYS
• .NET, Python, Node, Java, Javascript, Ruby, Perl, Go, PHP

• Haskell, Rust, Lua, Scala, Clojure, ObjecDveC, SwiF, Delphi

• Support for your favorite language/pla3orm is probably not an 
issue
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At this point, Sammy perked back up a little bit. Now that we were past the RFC reading 
stage, and she'd seen how simple and elegant JWTs were conceptually, she starting 
asking...

OK,
you've
got my
a"en%on
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How
do I

actually
use

JWTs?
JWTs WIYL! - LFNW 2017 – 6 May 2017 – @genehack 31



there are couple of different ways, because JWTs are intentionally pretty flexible. but one 
way you'll probably end up using them is as part of a fairly standard authentication/
authorization type flow

Basic auth/authz usage

(image stolen from jwt.io)
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Things to be aware of

• Payload/header NOT encrypted

• …don't send anything sensi6ve!

• Need to control expira6on, re-issue, etc.

• Some APIs will send a fresh JWT to the client per-request

• Sites other than issuing site can receive JWT

• …but they must share the secret to validate
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How is it actually transmi0ed?

• Up to you! Various methods:

• As part of the URL in a GET

• In a POST body

• In the Authorization header using Bearer scheme:

    Authorization: Bearer <token>
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Sammy isn't very big on theory. She likes to see the actual 
implementation so she can really understand what's going on...

How would
you actually
use this
in an app?
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Node code for generating a token after a successful login

Generate a token on login
app.post('/user/login', app.wrap(user_login));

var jwt = require('jwt'); // helper wrapper around 'jsonwebtoken'

function * user_login (req, res) {
  if (! (req.body.email && req.body.password)) {
    res.status(400);
    res.json({message: 'invalid request'});
    return;
  }

  var user = yield _fetch_user_by_email(req.body.email);

  var claims;

  if (_pw_validate(user.password, req.body.password)) {
    claims = { user_id: user.id };
  } else {
    res.status(401);
    res.header('WWW-Authenticate', 'Bearer realm=myapp');
    res.json({ message: 'authorization required' });
    return;
  }

  // sign the claim set and return the token in a header
  var token = jwt.sign(claims);

  res.append('X-MyApp-Token', token);

  res.status(200);
}
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This code is from an express app, so first we have to 
declare a route
Then we import a helper library that's just a thin wrapper 
around the jsonwebtoken NPM library.

Generate a token on login
app.post('/user/login', app.wrap(user_login));

var jwt = require('jwt'); // helper wrapper around 'jsonwebtoken'

function * user_login (req, res) {
  if (! (req.body.email && req.body.password)) {
    res.status(400);
    res.json({message: 'invalid request'});
    return;
  }
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Generate a token on login
  var user = yield _fetch_user_by_email(req.body.email);

  var claims;
  if (_pw_validate(user.password, req.body.password)) {
    claims = { user_id: user.id };
  }
  else {
    res.status(401);
    res.header('WWW-Authenticate', 'Bearer realm=myapp');
    res.json({ message: 'authorization required' });
    return;
  }
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Generate a token on login

  // sign the claim set and return the token in a header
  var token = jwt.sign(claims);

  res.append('X-MyApp-Token', token);

  res.status(200);
}
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OK, that's
how you

make one.

How do you
validate it?
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Again, because this is Express, we can do validation in a 
middleware. That'll make sure it happens on every request.

Validate with a middleware

// enable JWT-verification middleware

var jwt = require('jwt'); // helper wrapper around 'jsonwebtoken'

app.use(function (req, res, next) {
  // initialize the jwt object
  req.jwt = {};

  // now parse the Authorization header if it exists
  Promise.resolve(req.headers.authorization).then(function (auth) {
    // If the Authorization header is present and employs the correct
    // Bearar scheme, extract the token and attempt to verify it.

    if (auth) {
      var scheme  = auth.split(' ')[0];
      var token   = auth.split(' ')[1];

      if (scheme == 'Bearer') {
        return jwt.verify(token).catch(function (error) {
          throw new Error('failed to verify claim');
        });
      }
    }

    throw new Error('authorization not attempted');
  })
  .then(function (payload) {
    req.jwt = payload;
    next();
  })
  .catch(function (error) {
    // Allow login without JWT
    if (req.path == '/user/login' && req.method == 'POST') {
      return next();
    }

    res.status(401);
    res.header('WWW-Authenticate', 'Bearer realm=myapp');
    res.json({ message: 'authorization required' });
  });
});
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Validate with a middleware

// enable JWT-verification middleware

var jwt = require('jwt'); // helper wrapper around 'jsonwebtoken'

app.use(function (req, res, next) {
  // initialize the jwt object
  req.jwt = {};
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Validate with a middleware

  // now parse the Authorization header if it exists
  Promise.resolve(req.headers.authorization).then(function (auth) {
    // If the Authorization header is present and employs the correct
    // Bearar scheme, extract the token and attempt to verify it.

    if (auth) {
      var scheme  = auth.split(' ')[0];
      var token   = auth.split(' ')[1];

      if (scheme === 'Bearer') {
        return jwt.verify(token).catch(function (error) {
          throw new Error('failed to verify claim');
        });
      }
    }

    throw new Error('authorization not attempted');
  })
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Validate with a middleware

  .then(function (payload) {
    req.jwt = payload;
    next();
  })
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Validate with a middleware

  .catch(function (error) {
    // Allow login without JWT
    if (req.path == '/user/login' && req.method == 'POST') {
      return next();
    }

    res.status(401);
    res.header('WWW-Authenticate', 'Bearer realm=myapp');
    res.json({ message: 'authorization required' });
  });
});
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At this point, Sammy was pretty impressed and happy, and was making plans to use 
JWTs in all her future projects. But she wondered if there was anything else JWTs could 
do for her...

That's cool.
What else
you got?
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This is actually the feature of JWTs that inspired me to give this talk, because JWTs 
provide an easy solution for a problem that I feel like I've run into time and time again in 
my coding career

Recurring dilemma:
'lightweight'
access control
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leave it wide open
or implement full login ...and then user 
management, admin screens, etc.
or oauth -- but i've never had a good experience 
using oauth. anybody here like oauth?

Recurring dilemma: 'lightweight' access control

• Op$on 1: leave it wide open

• a/k/a the MongoDB or WTF,YOLO! paAern

• Op$on 2: implement full authn/authz subsystem

• …again

• Op$on 3: OAuth

!!!!!!
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photo credits
* open = https://www.flickr.com/photos/
keoni101/5356662124/

Where's the

middle
ground?
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photo credits
* vault = https://www.flickr.com/photos/
goodfeeling/24796188573/

Where's the

middle
ground?
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photo credit = https://www.flickr.com/photos/slemmon/
4938498564

A screen

door
for APIs
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Authoriza*on without authen*ca*on

• Scenario:

• You have an API

• You don't want to make anybody authen;cate to use it

• You don't want it wide open to the Internet either

• a/k/a authz without authn
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Solu%on: JWT with RSA keys

• Alterna)ve to secret in previous scenario: RSA key-pair

• Can include the public key in the JWT header using JWK

• JSON Web Key, natch

• Allows API client to produce claims in a verifiable way
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To set it up:

• Give authorized API client an RSA key-pair

• Record the fingerprint of the public key (important later!)

• You can even let the client generate the key-pair

• You just need the public key fingerprint
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On the client side:

• They make a JWT, using the private key to sign

• They include the public key in the header

• Include iat (issued-at) and exp (expires) claims

• Send JWT in with API request
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On the API side:

• Get the public key out of the header

• Validate the signature using the public key

• Validate that public key fingerprint is white-listed

• Signature produced with private key

• Public key is white-listed

• Therefore we know JWT is valid!
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Things to be aware of:

• You s'll want to validate iat and exp and any other rules

• Your library should probably do that stuff for you, mostly

• Again, nothing is encrypted, so don't plan on sensi've stuff in 
the payload or header
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Client side code
use Crypt::JWT qw(encode_jwt);
use Crypt::PK::RSA;
use HTTP::Request;

# generate a JWT and POST a request
my $pri_key = Crypt::PK::RSA->new('./key.pri');
my $pub_key = Crypt::PK::RSA->new('./key.pub');

my $token = encode_jwt(
  alg           => 'RS512',
  extra_headers => {
    jwk   => $pub_key->export_key_jwk('public', 1),
    nonce => undef ,
  },
  key           => $pri_key ,
  payload       => { iat => time() },
  relative_exp  => 1800,
);

HTTP::Request->new(
  'POST' => 'https://example.com/endpoint',
  ['Authorization' => "Bearer $token"],
  encode_json({ request => 'body' })
);
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maybe don't store your keys in files in the same directory as 
your code...

Client side code

use Crypt::JWT qw(encode_jwt);
use Crypt::PK::RSA;
use HTTP::Request;

my $pri_key = Crypt::PK::RSA->new('./key.pri');
my $pub_key = Crypt::PK::RSA->new('./key.pub');

JWTs WIYL! - LFNW 2017 – 6 May 2017 – @genehack 59



Client side code

my $token = encode_jwt(
  alg           => 'RS512',
  extra_headers => {
    jwk   => $pub_key->export_key_jwk('public', 1),
    nonce => undef ,
  },
  key           => $pri_key ,
  payload       => { iat => time() },
  relative_exp  => 1800,
);
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Client side code

  HTTP::Request->new(
    'POST' => 'https://example.com/endpoint',
    ['Authorization' => "Bearer $token"],
    encode_json({ request => 'body' })
  );
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Cri$cal bit:
adding the public key to the header
extra_headers => {
  jwk   => $pub_key->export_key_jwk('public', 1),
},

Key: find an RSA library that supports export to JWK format!
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API side
use Crypt::JWT qw(decode_jwt);
use Crypt::PK::RSA;
use Dancer;
use Try::Tiny;

my $auth_header = request_header 'Authorization' ;

my $token;
status_401 unless ( $token ) = $auth_header =~ /^Bearer (.*)$/;

# try to decode it and confirm valid sig,
# and valid iat and exp claims
my( $header, $payload );
try {
  ( $header, $payload ) = decode_jwt(
    token => $token , decode_header => 1 ,
    accepted_alg => 'RS512' ,
    verify_iat => 1 , verify_exp => 1
  );
};

# no catch block, just drop the error, we're out of here in that case
status_401 unless $header and $payload;

# check that expiration time is less than one hour
status_401 unless $payload->{exp} - $payload->{iat} < 3600;

# check that the included public key is on the whitelist
my $pk = Crypt::PK::RSA->new;
$pk->import_key($header->{jwk});
my $thumbprint = $pk->export_key_jwk_thumbprint;
status_401 unless config->{whitelist}{$thumbprint};

# if we get here, we're all good!
...
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API side: get the token
use Crypt::JWT qw(decode_jwt);
use Crypt::PK::RSA;
use Dancer;
use Try::Tiny;

my $auth_header = request_header 'Authorization' ;

my $token;
status_401 unless ( $token ) = $auth_header =~ /^Bearer (.*)$/;
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API side: decode the token
# try to decode it and confirm valid sig,
# and valid iat and exp claims
my( $header, $payload );
try {
  ( $header, $payload ) = decode_jwt(
    token => $token , decode_header => 1 ,
    accepted_alg => 'RS512' ,
    verify_iat => 1 , verify_exp => 1
  );
};

# no catch block, just drop the error, we're out of here in that case
status_401 unless $header and $payload;
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API side: decode the token

• Key in header wrong? FAILS

• Not right algorithm? FAILS

• Doesn't have iat and exp? FAILS

ALL that valida)on is happening inside the library, so I don't have 
to worry about it.

• Me? WINS
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API side: more checks

• We specify in the API docs that tokens can only be valid for one 
hour

• Have to check that ourselves

• Also need to make sure this isn't some random RSA keypair

• Need to make sure we know this public key
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our api has a rule that the token can't have an expires time more than 1 
hour into the future.
we also need to make sure the public key fingerprint is on the allowed 
list
one weakness with this scheme is, if a valid token leaks, that allows 
access to the API until it expires -- so make sure you chose an allowable 
access window based on an evaluation of that potential impact

API side: more valida0on

# check that expiration time is less than one hour
status_401 unless $payload->{exp} - $payload->{iat} < 3600;

# check that the included public key is on the whitelist
my $pk = Crypt::PK::RSA->new;
$pk->import_key($header->{jwk});

my $thumbprint = $pk->export_key_jwk_thumbprint;
status_401 unless config->{whitelist}{$thumbprint};
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API side: THAT'S ALL FOLKS

  # if we get here, we're all good!

• We know the public key in the header by its fingerprint,

• so we know the private key was used to sign the JWT

• (or it wouldn't validate)

• and therefore the JWT is from the private key holder

• (who is, by definiAon, authorized!)
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IMPORTANT NOTE!

This does, of course, depend on the client keeping the private key 
actually private

…but revoca,on is as simple as removing the fingerprint from the 
whitelist.
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More advanced usage

• Encrypted payloads (JWE)

• Nested JWT

See those RFCs!
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Conclusions

• JWTs solve some really common problems.

• JWTs solve them in a pre7y elegant way.

• This is really pre7y damn cool.
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Conclusions

• JWTs solve some really common problems.

• JWTs solve them in a pre7y elegant way.

• This is really pre7y damn cool!!!

• You should think about using JWTs.
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Thanks!

• JWT.io / auth0.com folks

• LFNW organizers

• YOU!
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Ques%ons?
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