

Elegant and Efficient Python

“The difference between the right word and the
almost right word is the difference between
lightning and a lightning bug.” --Mark Twain

Steve R. Hastings
steve@hastings.org

http://linuxfestnorthwest.org/sites/default/files/sl
ides/elegant_and_efficient_python.odp

Last Edited: 2015-04-27

mailto:steve@hastings.org
http://linuxfestnorthwest.org/sites/default/files/slides/elegant_and_efficient_python.odp
http://linuxfestnorthwest.org/sites/default/files/slides/elegant_and_efficient_python.odp
mailto:steve@hastings.org
http://linuxfestnorthwest.org/sites/default/files/slides/elegant_and_efficient_python.odp
http://linuxfestnorthwest.org/sites/default/files/slides/elegant_and_efficient_python.odp

See Also the Presenter Notes

● I have added explanations of the various slides
in the “presenter notes”. Look for them.

Python Hits the Sweet Spot

● Python is a fantastic combination of power and
expressiveness

“Pythonic” Code

● Elegant code is “Pythonic”

Zen of Python and PEP 8

● The famous “Zen of Python”

https://www.python.org/dev/peps/pep-0020/
– Beautiful is better than ugly.

– Explicit is better than implicit.

– Simple is better than complex.

– Complex is better than complicated.

– ...[15 more; go read them for yourself!]

● Style guide: PEP 8

https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/

Learn Python Idioms

● The legendary “Code Like a Pythonista”

http://python.net/~goodger/projects/pycon/2007
/idiomatic/handout.html

● Recorded lectures by Raymond Hettinger
– “Transforming Code into Beautiful, Idiomatic

Python” (from PyCon 2013)

https://www.youtube.com/watch?v=OSGv2VnC
0go

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go

The Code You Don't Write

● The fastest code is often terse and elegant

for Loops Without Indexing

● Don't do this:
colors = ['red', 'blue', 'green']

for i in range(len(colors)):
 print(colors[i])

● Do this:
for color in colors:
 print(color)

Use the Built-Ins 0

● Built-ins can often eliminate a loop
– any(), all(), min(), max(), sum()

Use the Built-Ins 1

● Needless loop:
total = 0
for n in data:

total += n

mean = total / len(data)

● Better:

mean = sum(data) / len(data)

Slicing Not Loops 0

● Average (mean) of first N elements
total = 0
for i in range(num_elements):

total += data[i]

mean = total / num_elements

mean = sum(lst[:num_elements]) / num_elements

Slicing Not Loops 1

● Reversing by slicing
for color in colors[::-1]:
 print(color)

● Or, use the built-in!
for color in reversed(colors):
 print(color)

Use iter() to make an iterator

for i in my_list:
 print(i)

● This loop actually works like this internally:
my_iterator = iter(my_list)
while True:
 try:
 i = next(my_iterator)
 print(i)
 except StopIteration:
 break

Explicit Iterator Using iter()

my_iterator = iter(my_list)

for x in my_iterator:
 if x == 'special_header': break

count = int(next(my_iterator))

for x in my_iterator:
 count -= 1
 if count < 0: break
 my_function(x)

Jargon: Iterable

Open Files Are Iterators 0

● Elegantly skip first 3 lines
with open(my_file, 'r') as f:
 # First, throw away three lines
 for _ in range(3):
 next(f)
 # Next, do something with remaining lines
 for line in f:
 my_function(line)

Open Files Are Iterators 1

● Elegantly skip over a header
with open(my_file, 'r') as f:
 for line in f:
 if line.startswith("end_header"):
 break
 for line in f:
 my_function(line)

Bad: Special First Iteration

my_list = []

first_pass = True
with open(my_file, 'r') as f:
 for x in f:
 if first_pass:
 header = x
 first_pass = False
 else:
 my_list.append(x)

Better: Re-use Iterator

with open(my_file, 'r') as f:
 header = next(f)
 my_list = list(f)

Python Module: itertools

● Study it! Learn it!

itertools Example

from itertools import dropwhile, islice

def before_header(x):
 return x != 'special_header'

my_iterator = dropwhile(before_header, my_list)
next(my_iterator) # drop all through header

count = int(next(my_iterator))

for x in islice(my_iterator, count):
 my_function(x)

lambda for Throw-Away Functions

● A very simple function:
def before_header(x):
 return x != 'special_header'

● We can do this:
before_header = lambda x: x != 'special_header'

Itertools: dropwhile with lambda

import itertools as it

my_iterator = it.dropwhile(
 lambda x: x != 'special_header',
 my_list)
next(my_iterator) # drop all through header

count = int(next(my_iterator))

for x in it.islice(my_iterator, count):
 my_function(x)

lambda Isn't “Better”

● Don't do this:
cube = lambda x: x**3

● Do this:
def cube(x):

return x**3

Jargon: “binding names”

bind name x to new string object
x = "example"

bind name y to same string object
y = x
print(x is y) # prints True

create new string object ending in '!'
x += "!"
print(x is y) # now prints False

Jargon: Mutable

● Mutable example: list
my_list = []
my_list.append(1) # we just mutated my_list

● Immutable example: string
s = "example"
s[0] = 'x' # raises an exception

Command/Query Separation

x = my_list.sort() # we just mutated my_list
assert x is None

id0 = id(my_list)
lst_sorted = sorted(my_list)
assert id0 != id(lst_sorted) # new list object

Iterating and Mutating

● Fails:
for key in my_dictionary:
 if is_bad(key):
 del my_dictionary[key]

● Works:
for key in list(my_dictionary):
 if is_bad(key):
 del my_dictionary[key]

Dictionary Full of Counts 0

d = {}
for name in lst_names:
 try:
 d[name] += 1
 except KeyError:
 d[name] = 1

Dictionary Full of Counts 1

d = {}
for name in lst_names:
 if name not in d:
 d[name] = 0
 d[name] += 1

Dictionary Full of Counts 2

d = {}

for name in lst_names:
 d.setdefault(name, 0)
 d[name] += 1

Dictionary Full of Counts 3

d = {}

for name in lst_names:
 d[name] = d.get(name, 0) + 1

Dictionary Full of Counts 4

from collections import defaultdict

d = defaultdict(int)
for name in lst_names:
 d[name] += 1

Dictionary Full of Counts 5

from collections import Counter

d = Counter(lst_names)

List Comprehensions

data = [1.2, 2, 2.2, 3, 3.2, 4]

my_list = [x**2 for x in data if x==int(x)]
assert my_list == [4, 9, 16]

Dictionary Comprehensions

d = { chr(ord('a')+i) : i+1 for i in range(26)}

print(d['a']) # prints 1
print(d['z']) # prints 26

Set Comprehensions

a = {ch for ch in 'Python' if ch not in 'Pot'}

print(a) # prints set(['y', 'n', 'h'])

Generator Expressions 0

data = [2, 2.5, 3, 3.5, 4]
g = (x**2 for x in data if x==int(x))

print(next(g)) # prints 4
print(next(g)) # prints 9
print(next(g)) # prints 16
print(next(g)) # raises StopIteration

Generator Expressions 1

from math import sqrt

rms = sqrt(sum(x**2 for x in data) / len(data))

Generator Expressions 2

with open(my_file, 'r') as f:
 result = sum(int(line) for line in f)

Generator Expressions 3

with open(my_file, 'r') as f:
 count = sum(1 for line in f if line.strip())

with open(my_file, 'r') as f:
 count = sum(line.strip() != '' for line in f)

Generator Expressions 4

bad_words = set(['gosh', 'heck', 'darn'])

my_list = 'You are a darn bad person'.split()
bad = any(w in bad_words for w in my_list)
assert bad == True

my_list = 'the Spanish Inquisition'.split()
bad = any(w in bad_words for w in my_list)
assert bad == False

Generator Expressions 5

bad_words = set(['gosh', 'heck', 'darn'])

with open(my_file, 'r') as f:
 bad = any(
 any(bad_word in word
 for bad_word in bad_words)
 for line in f for word in line.split())

Generator Expressions 6

● Do this:
total = sum(x**2 for x in iterable)

● Don't do this:
 X X
total = sum([x**2 for x in iterable])
 X X

Generators

def gen_range(start, stop):
 i = start
 while i < stop:
 yield i
 i += 1

g = gen_range(0, 3)
print(next(g)) # prints 0
print(next(g)) # prints 1
print(next(g)) # prints 2
print(next(g)) # raises StopIteration

Counting Words From a File

from collections import defaultdict

d = defaultdict(int)

with open(fname, 'r') as f:
 for line in f:
 for word in line.split():
 d[word] += 1

Generator: read_words()

def read_words(file_name):
 with open(file_name, 'r') as f:
 for line in f:
 for word in line.split():
 yield word

Using read_words()

from collections import Counter
counts = Counter(read_words(my_file))

bad_words = set(['gosh', 'heck', 'darn'])
bad = any(word in bad_words
 for word in read_words(my_file))

total = sum(int(word)
 for word in read_words(my_file)

Tree Traversal 0

class Node(object):
 def __init__(self, operator, left, right):
 self.operator = operator
 self.left = left
 self.right = right

def echo(x):
 print('{} '.format(x), end='')

Tree Traversal 1

(1 + 2) * (3 + 4)

expr = Node('*', Node('+', 1, 2), Node('+', 3, 4))

Tree Traversal 2

def prefix_echo(tree):
 echo(tree.operator)

 if hasattr(tree.left, 'operator'):
 prefix_echo(tree.left)
 else:
 echo(tree.left)

 if hasattr(tree.right, 'operator'):
 prefix_echo(tree.right)
 else:
 echo(tree.right)

Tree Traversal 3

prefix_echo(expr) # echoes: * + 1 2 + 3 4

Generators: Prefix Traversal

def prefix(tree):
 yield tree.operator

 if hasattr(tree.left, 'operator'):
 yield from prefix(tree.left)
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 yield from prefix(tree.right)
 else:
 yield str(tree.right)

Generators: Infix Traversal

def infix(tree):
 if hasattr(tree.left, 'operator'):
 yield from infix(tree.left)
 else:
 yield str(tree.left)

 yield tree.operator

 if hasattr(tree.right, 'operator'):
 yield from infix(tree.right)
 else:
 yield str(tree.right)

Generators: Postfix Traversal

def postfix(tree):
 if hasattr(tree.left, 'operator'):
 yield from postfix(tree.left)
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 yield from postfix(tree.right)
 else:
 yield str(tree.right)

 yield tree.operator

Traversal Is Abstracted

original expression: (1 + 2) * (3 + 4)

expr contains binary tree of above

print(' '.join(prefix(expr)))

prints: * + 1 2 + 3 4

print(' '.join(infix(expr)))

prints: 1 + 2 * 3 + 4

print(' '.join(postfix(expr)))

prints: 1 2 + 3 4 + *

Traversal Without yield from

def prefix(tree):
 yield tree.operator

 if hasattr(tree.left, 'operator'):
 for x in prefix(tree.left): yield x
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 for x in prefix(tree.right): yield x
 else:
 yield str(tree.right)

Context Managers 0

f = open(my_file, 'r')
try:
 for line in f:
 my_function(line)
finally:
 close(f)

with open(my_file, 'r') as f:
 for line in f:
 my_function(line)

Context Managers 1

try:
 os.remove(my_file)
except FileNotFoundError:
 pass

from contextlib import suppress

with suppress(FileNotFoundError):
 os.remove(my_file)

Python 2.x OSError

import errno, os

try:
 os.remove(my_file)
except OSError as e:
 if e.errno != errno.ENOENT:
 raise
 else:
 pass

Write Your Own Context Manager

class suppress_oserror(object):
 def __init__(self, errno):
 self.errno = errno

 def __enter__(self):
 return self

 def __exit__(self, e_type, e_val, e_tb):
 if e_type is not OSError:
 return False
 if e_val.errno != self.errno:
 return False
 return True

Using suppress_oserror()

import errno, os

with suppress_oserror(errno.ENOENT):
 os.remove(my_file)

Decorators

from some_module import some_decorator

def my_function(x):
 return x + 5
my_function = some_decorator(my_function)

@some_decorator
def my_function(x):
 return x + 5

contextlib.contextmanager

import contextlib, logging, time

@contextlib.contextmanager
def timed_block(level, mesg):
 # before yield is the 'enter' part
 start = time.time()
 yield
 # after yield is the 'exit' part
 stop = time.time()
 elapsed = stop – start
 logging.log(level, mesg +
 '{} secs'.format(elapsed))

Using timed_block()

from logging import INFO

with timed_block(INFO, 'block exec time'):
 my_function0()
 my_function1()
 my_function2()

The time to run the block is logged.

Writing a Simple Decorator 0

● Disclaimer!
● There are plenty of blog posts and book

examples showing the full details
● This is just the bare bones, for simplicity

Writing a Simple Decorator 1

def log_execution_time(fn):
 def my_wrapper(*args, **kwargs):
 start = time.time()
 result = fn(*args, **kwargs)
 stop = time.time()
 elapsed = stop - start
 log.info('{} took: {} seconds'.format(
 fn.__name__, elapsed)
 return result
 return my_wrapper

Best Practice: @wraps

from functools import wraps

@wraps
def log_execution_time(fn):
 def my_wrapper(*args, **kwargs):
 start = time.time()
 result = fn(*args, **kwargs)
 stop = time.time()
 elapsed = stop - start
 log.info('{} took: {} seconds'.format(
 fn.__name__, elapsed)
 return result
 return my_wrapper

Using the Simple Decorator

@log_execution_time
def my_function(x):
 return x + 5

result = my_function(5) # execution time logged

Making the Decorator Optional

import os

if os.getenv('LOG_EXEC_TIME', False):
 # use our decorator
 log_exec_time = log_execution_time
else:
 # set it to a do-nothing decorator
 def log_exec_time(fn):
 return fn

Thank You!

● Thank you for attending my talk. I hope you
enjoyed it and/or learned something new.

● ZipRecruiter.com is hiring people with Python or
Perl skills (including work-from-home)

http://www.ziprecruiter.com/

http://www.ziprecruiter.com/
http://www.ziprecruiter.com/

Elegant and Efficient Python

“The difference between the right word and the
almost right word is the difference between
lightning and a lightning bug.” --Mark Twain

Steve R. Hastings
steve@hastings.org

http://linuxfestnorthwest.org/sites/default/files/sl
ides/elegant_and_efficient_python.odp

Last Edited: 2015-04-27

● This presentation was made in LibreOffice Impress.
You can download the presentation file from this
URL:

http://linuxfestnorthwest.org/sites/default/files/slides
/elegant_and_efficient_python.odp

See Also the Presenter Notes

● I have added explanations of the various slides
in the “presenter notes”. Look for them.

● Good job, you found the presenter notes!

Python Hits the Sweet Spot

● Python is a fantastic combination of power and
expressiveness

● Python is a powerful, high-level language
● Python is clean and expressive; easy to read
● Python is "The Universal Language"

● Useful for many purposes; “Batteries Included”
● Python's combination of power, expressiveness, and

utility sets it apart
● Python “fits my brain”

“Pythonic” Code

● Elegant code is “Pythonic”

● Python coders (“Pythonistas”) widely agree on many
aspects of Python coding style

● Code that conforms to the general approved style is
“Pythonic” code

● “Pythonic” also applies to commonly approved
idioms

● Pythonic idioms are usually very efficient
● If the idioms were slow, who would use them?

Zen of Python and PEP 8

● The famous “Zen of Python”

https://www.python.org/dev/peps/pep-0020/
– Beautiful is better than ugly.

– Explicit is better than implicit.

– Simple is better than complex.

– Complex is better than complicated.

– ...[15 more; go read them for yourself!]

● Style guide: PEP 8

https://www.python.org/dev/peps/pep-0008/

Learn Python Idioms

● The legendary “Code Like a Pythonista”

http://python.net/~goodger/projects/pycon/2007
/idiomatic/handout.html

● Recorded lectures by Raymond Hettinger
– “Transforming Code into Beautiful, Idiomatic

Python” (from PyCon 2013)

https://www.youtube.com/watch?v=OSGv2VnC
0go

The Code You Don't Write

● The fastest code is often terse and elegant

● Python, sadly, is about 50 times slower than C
● Python programs can still be fast!
● Make full use of the tools Python gives you

● Both built-in language features and library modules
● Library code can be fast C or even fast FORTRAN

● It would be crazy to write your own matrix
multiply; just use the one in NumPy.

● The fastest code is the code you didn't write!

for Loops Without Indexing

● Don't do this:
colors = ['red', 'blue', 'green']

for i in range(len(colors)):
 print(colors[i])

● Do this:
for color in colors:
 print(color)

Use the Built-Ins 0

● Built-ins can often eliminate a loop
– any(), all(), min(), max(), sum()

Use the Built-Ins 1

● Needless loop:
total = 0
for n in data:

total += n

mean = total / len(data)

● Better:

mean = sum(data) / len(data)

Slicing Not Loops 0

● Average (mean) of first N elements
total = 0
for i in range(num_elements):

total += data[i]

mean = total / num_elements

mean = sum(lst[:num_elements]) / num_elements

● I should have put in a slide about basic slicing. Well,
you can read about it here:

http://stackoverflow.com/questions/509211/explain-
pythons-slice-notation

Slicing Not Loops 1

● Reversing by slicing
for color in colors[::-1]:
 print(color)

● Or, use the built-in!
for color in reversed(colors):
 print(color)

Use iter() to make an iterator

for i in my_list:
 print(i)

● This loop actually works like this internally:
my_iterator = iter(my_list)
while True:
 try:
 i = next(my_iterator)
 print(i)
 except StopIteration:
 break

● The loop doesn't actually have the variable name
“my_iterator” of course

● The key points here: an iterator object is advanced
using its “next” method

● The actual next method name is: .__next__()

Explicit Iterator Using iter()

my_iterator = iter(my_list)

for x in my_iterator:
 if x == 'special_header': break

count = int(next(my_iterator))

for x in my_iterator:
 count -= 1
 if count < 0: break
 my_function(x)

● Suppose you need to scan for a value, then stop the
scan and do something else

● This is a contrived example, but you might
legitimately do something like this when you are,
for example, parsing a file

● You could of course also do the loop like this:

for _ in range(count):
 x = next(my_iterator)
 my_function(x)

● The underscore variable name is a convention that
signals that we don't care about the value of that
variable. We must provide a variable in that
position in the for statement, but we really just want
the count; we don't use the values.

Jargon: Iterable

● Anything is “iterable” if we can pull values from it,
one value at a time

● Usually we iterate with a for loop
● But can also use sum() and etc.
● Can use next() on an actual iterator

● If you can pass it to iter() it is iterable!

Open Files Are Iterators 0

● Elegantly skip first 3 lines
with open(my_file, 'r') as f:
 # First, throw away three lines
 for _ in range(3):
 next(f)
 # Next, do something with remaining lines
 for line in f:
 my_function(line)

● Instead of using next(), you can of course use
the .readline() method, which will do the exact
same thing.

● The important idea I'm trying to get across is that an
open file object is an iterator, and that you can treat
it the same as any other iterator.

Open Files Are Iterators 1

● Elegantly skip over a header
with open(my_file, 'r') as f:
 for line in f:
 if line.startswith("end_header"):
 break
 for line in f:
 my_function(line)

● The important point here is that you can break out of
one loop, then start looping with a second for loop
and it is picking up where the first one left off. It's
the same thing as the “Explicit Iterators with
iter()” slide, but we didn't need to call iter()
because the open file object is already an iterator.

Bad: Special First Iteration

my_list = []

first_pass = True
with open(my_file, 'r') as f:
 for x in f:
 if first_pass:
 header = x
 first_pass = False
 else:
 my_list.append(x)

● Neither elegant nor efficient!
● Every pass through the loop must execute that if

statement, and we have to manage a flag variable
to keep track of which loop it is. Yuck.

Better: Re-use Iterator

with open(my_file, 'r') as f:
 header = next(f)
 my_list = list(f)

● These lines do the same job as all the code on the
previous slide

● No need for that first_pass flag
● Pass any iterator to list() and it will construct a list

containing the values returned by the iterator

Python Module: itertools

● Study it! Learn it!

● Python module full of elegant and efficient tools
● When you need something to be fast, look in itertools

and see if there is anything you can use

itertools Example

from itertools import dropwhile, islice

def before_header(x):
 return x != 'special_header'

my_iterator = dropwhile(before_header, my_list)
next(my_iterator) # drop all through header

count = int(next(my_iterator))

for x in islice(my_iterator, count):
 my_function(x)

● The example from a few slides back can be rewritten
using itertools and it's a bit cleaner.

lambda for Throw-Away Functions

● A very simple function:
def before_header(x):
 return x != 'special_header'

● We can do this:
before_header = lambda x: x != 'special_header'

● In the example, the function before_header()
only exists to use with
itertools.dropwhile().

● And it's a very simple function.
● We can make a trivial function, so simple it doesn't

even have a name. We do this with the lambda
keyword.

● In Python, lambda can only be used with a single
expression returning a single value.

● If you need a multi-line function, just define the
function the usual way. It will have a name but
that's not a problem.

Itertools: dropwhile with lambda

import itertools as it

my_iterator = it.dropwhile(
 lambda x: x != 'special_header',
 my_list)
next(my_iterator) # drop all through header

count = int(next(my_iterator))

for x in it.islice(my_iterator, count):
 my_function(x)

● Since itertools.dropwhile() needs us to pass
it a callable object for the conditional, we make a
function object to pass in. Since this function is
extremely simple and we don't need to reuse it, it's
a good candidate for lambda; note that the
function is never given a name here.

lambda Isn't “Better”

● Don't do this:
cube = lambda x: x**3

● Do this:
def cube(x):

return x**3

● I have seen lambda used for no reason
● If the function needs a name, don't use lambda

Jargon: “binding names”

bind name x to new string object
x = "example"

bind name y to same string object
y = x
print(x is y) # prints True

create new string object ending in '!'
x += "!"
print(x is y) # now prints False

● In Python, everything is an object
● Any name may have any object bound to it
● One object can be bound to multiple names
● Strings are immutable so the += operator creates a

new string object and re-binds the name to the new
object.

Jargon: Mutable

● Mutable example: list
my_list = []
my_list.append(1) # we just mutated my_list

● Immutable example: string
s = "example"
s[0] = 'x' # raises an exception

● If you can change the internal state of an object, then
that object is a “mutable” object

Command/Query Separation

x = my_list.sort() # we just mutated my_list
assert x is None

id0 = id(my_list)
lst_sorted = sorted(my_list)
assert id0 != id(lst_sorted) # new list object

● This is a convention only, not enforced by the
language. Nothing will stop you from breaking this
convention.

● Python strictly obeys “Command/Query Separation”
and your code should too

● If a function doesn't mutate its arguments, it may
return a value

● If a function mutates one or more of its arguments, it
should return None

● list.sort() mutates the list; it sorts in place
● Therefore it returns None

● sorted() returns a sorted copy of the list
● Therefore it doesn't mutate the list

Iterating and Mutating

● Fails:
for key in my_dictionary:
 if is_bad(key):
 del my_dictionary[key]

● Works:
for key in list(my_dictionary):
 if is_bad(key):
 del my_dictionary[key]

● Bad idea to mutate and iterate at the same time
● The first example fails; raises an exception
RuntimeError: dictionary changed size
during iteration

● The second example works because we create a
new list of just the keys of the dictionary, and the
list is not mutated when the dictionary is.

Dictionary Full of Counts 0

d = {}
for name in lst_names:
 try:
 d[name] += 1
 except KeyError:
 d[name] = 1

● This is the “Easier to Get Forgiveness Than
Permission” technique: try to do something, catch
the exception if it doesn't work.

● Not appropriate here. It's not elegant, and initially
the dictionary is empty, so the exception will
happen once for each name.

● The alternative to this is “Look Before You Leap”,
check to see if a key has a value before trying to
increment it. The next slide will show that.

Dictionary Full of Counts 1

d = {}
for name in lst_names:
 if name not in d:
 d[name] = 0
 d[name] += 1

● This is the most straightforward way to get counts in
a dictionary.

Dictionary Full of Counts 2

d = {}

for name in lst_names:
 d.setdefault(name, 0)
 d[name] += 1

● The .setdefault() method sets a value if the
name is not already set to a value.

Dictionary Full of Counts 3

d = {}

for name in lst_names:
 d[name] = d.get(name, 0) + 1

● The .get() method returns the current value
associated with the given key; if you provide a
second argument, that will be provided as the
default value if the key is not yet set.

Dictionary Full of Counts 4

from collections import defaultdict

d = defaultdict(int)
for name in lst_names:
 d[name] += 1

● Python provides the elegant defaultdict
● Pass a callable function that works with no

argument
● The callable will be called to create the default

value

Dictionary Full of Counts 5

from collections import Counter

d = Counter(lst_names)

● “Batteries included”: collections.Counter
● Solves this exact problem

● Moral of the story: learn the Python library
● You may find something that solves your exact

problem

List Comprehensions

data = [1.2, 2, 2.2, 3, 3.2, 4]

my_list = [x**2 for x in data if x==int(x)]
assert my_list == [4, 9, 16]

● List comprehensions provide a terse way to build a
custom list

● Three parts: expression, for clause, if clause
● Expression: how to compute each value
● for clause: how to get values to use in expression
● if clause: optional, filters some values out

Dictionary Comprehensions

d = { chr(ord('a')+i) : i+1 for i in range(26)}

print(d['a']) # prints 1
print(d['z']) # prints 26

● ord(ch) returns an integer representing the
specified character, the “ordinal value” of that
character. ord('a') will return 97 on any modern
computer.

● chr(n) returns the letter (“character”) corresponding
to the given ordinal value. chr(97) returns 'a'
on any modern computer.

● Thus this one line builds a dictionary mapping 'a' to
1, 'b' to 2, and so on through 'z' mapping to 26.

Set Comprehensions

a = {ch for ch in 'Python' if ch not in 'Pot'}

print(a) # prints set(['y', 'n', 'h'])

● Of course, with a set, the order of the letters printed
might vary from what you see here. A set doesn't
keep any particular ordering on its data.

Generator Expressions 0

data = [2, 2.5, 3, 3.5, 4]
g = (x**2 for x in data if x==int(x))

print(next(g)) # prints 4
print(next(g)) # prints 9
print(next(g)) # prints 16
print(next(g)) # raises StopIteration

● Syntax is nearly identical to listcomp
● But uses parentheses instead of square brackets
● If you use it in a function call, usually the function's

parentheses work for the generator expression!
● Produces an iterator

● Specifically: a generator object
● Use when you just want the value

● Avoid building a list, using it once, then deleting it

Generator Expressions 1

from math import sqrt

rms = sqrt(sum(x**2 for x in data) / len(data))

● This example shows computing root mean square
● http://en.wikipedia.org/wiki/Root_mean_square

Generator Expressions 2

with open(my_file, 'r') as f:
 result = sum(int(line) for line in f)

● This example opens a text file, reads lines, converts
each line to an integer, and sums the integers.

● This only works if there is one number per line on the
text file.

● A later slide will show a similar example that can
handle multiple numbers on a line.

Generator Expressions 3

with open(my_file, 'r') as f:
 count = sum(1 for line in f if line.strip())

with open(my_file, 'r') as f:
 count = sum(line.strip() != '' for line in f)

● Count the non-blank lines in a file
● Count 1 for each non-blank line.

● Second example is the same thing, a trickier way.
● Exploit that bool is a subclass of int
● True has value 1, False has value 0
● This seems a little sleazy to me but elegant at the

same time! Can it be both?

Generator Expressions 4

bad_words = set(['gosh', 'heck', 'darn'])

my_list = 'You are a darn bad person'.split()
bad = any(w in bad_words for w in my_list)
assert bad == True

my_list = 'the Spanish Inquisition'.split()
bad = any(w in bad_words for w in my_list)
assert bad == False

● I apologize if anyone is shocked by the bad language
on this example.

● Generator expressions are powerful and elegant
when used in combination with any(), all(),
sum(), min(), max() and so on.

● So, did you expect the Spanish Inquisition?
Probably not... nobody expects the Spanish
Inquisition.

Generator Expressions 5

bad_words = set(['gosh', 'heck', 'darn'])

with open(my_file, 'r') as f:
 bad = any(
 any(bad_word in word
 for bad_word in bad_words)
 for line in f for word in line.split())

● It is possible to overdo it with list comprehensions
and generator expressions.

● This is just too much. It's messy and not elegant.
● In a few slides I'll show how to do this elegantly with

a function (specifically, a generator function).

Generator Expressions 6

● Do this:
total = sum(x**2 for x in iterable)

● Don't do this:
 X X
total = sum([x**2 for x in iterable])
 X X

● The first example uses a generator expression to
compute the needed values.

● The second one has square brackets, which means
it is a list comprehension. It builds a list that is
used once and then deleted. There's no need for
that!

● People used to write code like that when Python
didn't have generator expressions, but only had list
comprehensions. Those days are over with.

Generators

def gen_range(start, stop):
 i = start
 while i < stop:
 yield i
 i += 1

g = gen_range(0, 3)
print(next(g)) # prints 0
print(next(g)) # prints 1
print(next(g)) # prints 2
print(next(g)) # raises StopIteration

● Generators allow you to think of how to generate a
whole sequence, yet generate only one value at a
time as needed.

● When you call a generator, you get back a generator
object, like the object you get back from a
generator expression.

● A generator object is an iterator, and works like the
other iterator examples already shown.

Counting Words From a File

from collections import defaultdict

d = defaultdict(int)

with open(fname, 'r') as f:
 for line in f:
 for word in line.split():
 d[word] += 1

● The example shows code for counting the words in a
file.

● It is not elegant; file parsing is tangled up with the
counting code.

Generator: read_words()

def read_words(file_name):
 with open(file_name, 'r') as f:
 for line in f:
 for word in line.split():
 yield word

● Word extraction is now available as a function. The
function returns an iterator that works anywhere an
iterable works in Python.

Using read_words()

from collections import Counter
counts = Counter(read_words(my_file))

bad_words = set(['gosh', 'heck', 'darn'])
bad = any(word in bad_words
 for word in read_words(my_file))

total = sum(int(word)
 for word in read_words(my_file)

● The generator completely decouples the parsing out
of words from the text file, from what you do with
the parsed words.

● Since the generator returns an iterator, we can
simply use it like we used other iterators in other
examples.

● The third example sums numbers from a file, and
there can be multiple numbers per line.

Tree Traversal 0

class Node(object):
 def __init__(self, operator, left, right):
 self.operator = operator
 self.left = left
 self.right = right

def echo(x):
 print('{} '.format(x), end='')

● If you aren't familiar with tree traversal and this
seems weird, feel free to skip this section.

● Here's Node(), a simple class for a binary tree
● Used to represent simple math expressions

● Also, the echo() function, a convenient way to print
a value, followed by a space, with no newline.

● echo() is here just to save space on a later slide.

Tree Traversal 1

(1 + 2) * (3 + 4)

expr = Node('*', Node('+', 1, 2), Node('+', 3, 4))

● The example shows a simple math expression.
● Using the Node() class, we can build a binary tree

that represents the math expression.
● The name expr is short for “expression”
● There are three nodes in the binary tree: one that

expresses (1 + 2), one that expresses (3 + 4),
and one that expresses multiplying the previous
two. The binary tree makes the grouping totally
unambiguous; the positions of the nodes in the
tree strictly specify the order of the operations.
No parentheses needed.

Tree Traversal 2

def prefix_echo(tree):
 echo(tree.operator)

 if hasattr(tree.left, 'operator'):
 prefix_echo(tree.left)
 else:
 echo(tree.left)

 if hasattr(tree.right, 'operator'):
 prefix_echo(tree.right)
 else:
 echo(tree.right)

● If you have never seen this before, it may seem
tricky. But this can be explained very simply:

● We always echo the operator first.
● Then, we visit the left “child” of the node.

● If the left has an “operator” member, it must be
another node, so recursively call the function to
visit that node.

● If it doesn't have an “operator” member, it must
be a number, so just echo the number.

● Then, we visit the right “child” just as the left.

● The result: echo a prefix version of the expression.

Tree Traversal 3

prefix_echo(expr) # echoes: * + 1 2 + 3 4

● This shows what the output would be from running
the code.

Generators: Prefix Traversal

def prefix(tree):
 yield tree.operator

 if hasattr(tree.left, 'operator'):
 yield from prefix(tree.left)
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 yield from prefix(tree.right)
 else:
 yield str(tree.right)

● This is just like prefix_echo(), but instead of
having calls to echo() hard-coded inside the
function, it simply yields the values.

● Since all I want to do is print out the values, this
converts the numbers to strings before yielding
them.

● A real program with a binary tree would probably
return the values unchanged.

Generators: Infix Traversal

def infix(tree):
 if hasattr(tree.left, 'operator'):
 yield from infix(tree.left)
 else:
 yield str(tree.left)

 yield tree.operator

 if hasattr(tree.right, 'operator'):
 yield from infix(tree.right)
 else:
 yield str(tree.right)

● This is exactly like prefix(), but it does things in a
different order. First visits left child, then yields the
operator, then visits the right child.

● This returns in the familiar infix order.
● We could make a function that printed parentheses

and then we would get back an expression that
would evaluate properly. This version doesn't
provide any parentheses.

Generators: Postfix Traversal

def postfix(tree):
 if hasattr(tree.left, 'operator'):
 yield from postfix(tree.left)
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 yield from postfix(tree.right)
 else:
 yield str(tree.right)

 yield tree.operator

● Just like the previous two, but prints in postfix order.
Visits left child, then visits right child, then yields up
the operator.

Traversal Is Abstracted

original expression: (1 + 2) * (3 + 4)

expr contains binary tree of above

print(' '.join(prefix(expr)))

prints: * + 1 2 + 3 4

print(' '.join(infix(expr)))

prints: 1 + 2 * 3 + 4

print(' '.join(postfix(expr)))

prints: 1 2 + 3 4 + *

● Prefix puts the operator first. This is unambiguous;
no parentheses are needed to correctly evaluate
the prefix expression.

● Infix is the familiar order; it needs parentheses to
disambiguate order of operations.

● Postfix puts the operator after the values. This is
unambiguous; no parentheses are needed to
correctly evaluate the postfix expression.

● In fact, if you have a “Reverse Polish Notation”
calculator, you could type this in and it would
produce the correct result.

● Each of these still represents the original expression;
they are just different ways of looking at the
expression.

Traversal Without yield from

def prefix(tree):
 yield tree.operator

 if hasattr(tree.left, 'operator'):
 for x in prefix(tree.left): yield x
 else:
 yield str(tree.left)

 if hasattr(tree.right, 'operator'):
 for x in prefix(tree.right): yield x
 else:
 yield str(tree.right)

Older versions of Python don't support yield from,
so this is how you would implement a recursive
function in a generator without yield from.

Context Managers 0

f = open(my_file, 'r')
try:
 for line in f:
 my_function(line)
finally:
 close(f)

with open(my_file, 'r') as f:
 for line in f:
 my_function(line)

● “Context Managers” set up a “context” for you
● Basically, they do setup and then do teardown
● Teardown occurs no matter what happens

● Specifically, if an exception is raised, or not
● Some useful ones already built-in to Python

● But you can write your own

● The first example shows the correct way to make
sure a file is properly closed, even if
my_function() raises an exception.

● The second example does the same thing, more
conveniently, using a context manager.

Context Managers 1

try:
 os.remove(my_file)
except FileNotFoundError:
 pass

from contextlib import suppress

with suppress(FileNotFoundError):
 os.remove(my_file)

● Catching and suppressing the exception is the best
practice for deleting a file.

● “Look Before You Leap” might not work, as there is a
race condition: the file might exist when you test for
its existence, and then be deleted right after the
test. Then the file deletion would fail and the
exception would be raised! Better to just try to
delete the file, and handle the exception if it
happens.

Python 2.x OSError

import errno, os

try:
 os.remove(my_file)
except OSError as e:
 if e.errno != errno.ENOENT:
 raise
 else:
 pass

● The code to correctly handle the exception is even
more complicated in Python 2.x, because
os.remove() just raises OSError for any error.
You are expected to check the errno code to see
specifically which error occurred.

● The next slide will show a context manager to
suppress an OSError but only if the errno code
matches a particular value.

Write Your Own Context Manager

class suppress_oserror(object):
 def __init__(self, errno):
 self.errno = errno

 def __enter__(self):
 return self

 def __exit__(self, e_type, e_val, e_tb):
 if e_type is not OSError:
 return False
 if e_val.errno != self.errno:
 return False
 return True

● Suppress Python 2.x os error by errno
● In Python 2.x many os methods raise OSError
● Suppress based on .errno attribute of exception

object
● This may seem complex but it's not bad:

● __enter__() sets up the context
● __exit__() is called after the block completes,

with information about the exception raised by
the block (if any)

● __init__() just sets up the context manager
object.

Using suppress_oserror()

import errno, os

with suppress_oserror(errno.ENOENT):
 os.remove(my_file)

● In Python 2.x, this correctly supresses the OSError
exception only when the errno is set to the “file
does not exist” code.

● It would still allow the exception to be raised if the
errno was some other value, such as
errno.EISDIR “file is a directory”.

Decorators

from some_module import some_decorator

def my_function(x):
 return x + 5
my_function = some_decorator(my_function)

@some_decorator
def my_function(x):
 return x + 5

● The @decorator syntax “wraps” a function
● The two examples have the same effect

contextlib.contextmanager

import contextlib, logging, time

@contextlib.contextmanager
def timed_block(level, mesg):
 # before yield is the 'enter' part
 start = time.time()
 yield
 # after yield is the 'exit' part
 stop = time.time()
 elapsed = stop – start
 logging.log(level, mesg +
 '{} secs'.format(elapsed))

● This shows how to make a simple context manager
that measures how long the block takes to run, and
writes a line into the log with that information.

● contextlib.contextmanager is a decorator.
You use it to wrap your custom context manager
function.

● Everything before the yield becomes the code that
runs to set up the context; everything after the
yield runs to finalize the context.

Using timed_block()

from logging import INFO

with timed_block(INFO, 'block exec time'):
 my_function0()
 my_function1()
 my_function2()

The time to run the block is logged.

Writing a Simple Decorator 0

● Disclaimer!
● There are plenty of blog posts and book

examples showing the full details
● This is just the bare bones, for simplicity

Writing a Simple Decorator 1

def log_execution_time(fn):
 def my_wrapper(*args, **kwargs):
 start = time.time()
 result = fn(*args, **kwargs)
 stop = time.time()
 elapsed = stop - start
 log.info('{} took: {} seconds'.format(
 fn.__name__, elapsed)
 return result
 return my_wrapper

● Create a new function object that includes the
function to be wrapped

● Runs other code before the saved function, then runs
the saved function, then runs more code after the
saved function

● The (*args, **kwargs) saves up the arguments
and keyword arguments, and then passes them
when we call the saved function object.

● Finally we return the new function object that wraps
the function.

Best Practice: @wraps

from functools import wraps

@wraps
def log_execution_time(fn):
 def my_wrapper(*args, **kwargs):
 start = time.time()
 result = fn(*args, **kwargs)
 stop = time.time()
 elapsed = stop - start
 log.info('{} took: {} seconds'.format(
 fn.__name__, elapsed)
 return result
 return my_wrapper

● Same as the previous slide except for the first two
lines.

● The @wraps decorator makes sure that the new
“wrapped” function returned by your decorator has
the same name, plus the same docstring as the
function being wrapped.

Using the Simple Decorator

@log_execution_time
def my_function(x):
 return x + 5

result = my_function(5) # execution time logged

Making the Decorator Optional

import os

if os.getenv('LOG_EXEC_TIME', False):
 # use our decorator
 log_exec_time = log_execution_time
else:
 # set it to a do-nothing decorator
 def log_exec_time(fn):
 return fn

● This shows how to make a decorator optional.
Without changing the source code at all, you can
enable or disable logging. Just set or unset the
environment variable.

● The do-nothing decorator just gives the function
object back, without actually wrapping it.

● You can use decorators to add possibly-slow tests or
logging to your code... and if you disable them,
there is zero cost in either time or memory. The
functions are simply not wrapped so the possibly-
slow code isn't even there to run!

Thank You!

● Thank you for attending my talk. I hope you
enjoyed it and/or learned something new.

● ZipRecruiter.com is hiring people with Python or
Perl skills (including work-from-home)

http://www.ziprecruiter.com/

● If you have any questions about any of these slides,
you can email me, or just post a question on
StackOverflow.com and someone will help you.

● Thanks for reading through the slides from my talk!

