
CLOUD TELEMETRY
Marcin Spoczynski
Researcher @ Intel Labs

LinuxFest
06-05-2017

Legal Disclaimer

Intel, the Intel logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2017 Intel Corporation. All rights reserved
Co-funded	by	the	Horizon	2020	Framework	Programme	of	the	

European	Union

Who Am I

• Researcher	on	H2020	Mikelangeloproject	/	Cloud	Engineer	
• Work/Research:	telemetry,	tools,	cloud	software	
management,	visualizations

• now	Researcher	Intel	Labs	previously	Python/C	Developer	and	
DevOps

Agenda

• Systems	Before	Cloud	(BC)	and	Now
• Telemetry
• Let's	complicate	it	– Cloud
• Metric	Aggregation
• Anomaly	Detection
• Closing	the	Loop
• Q&A

Systems BC

• Single	or	multithreaded	application
• Application	deployed	on	one	or	multiple	servers	without	clear	
dependencies

• Big	applications	very	often	deployed	only	on	the	one	server
• Single	instance	apps	
• High	maintenance	costs

Cloud Systems

• Multithreaded,	concurrency	applications
• Workload	dependencies
• Micro	services	
• Multi-instance	application	deployed	across	servers
• Hardware	appliances	implemented	as	workloads	on	the	Cloud	
(switches,	routers,	firewall,	VPN)

• Low	maintenance	costs,	stacks	moved	to	the	public	cloud

VM1PUBLIC
CLOUD

VM1PUBLIC
CLOUD

þ þVM1

VM1PUBLIC
CLOUD

þ þVM1

Cloud is complicated

Telemetry

Telemetry

Telemetry is	an	automated	communications	process	by	which	
measurements	and	other	data	are	collected	at	remote	or	inaccessible	
points	and	transmitted	to	receiving	equipment	for	monitoring.The	
word	is	derived	fromGreek roots: tele =	remote,	andmetron =	

measure.	

source:	wikipedia

Cloud Telemetry vs Native Telemetry

- More data to collect
- More visible correlations between applications and management

software
- Data needs to be highly aggregated: hundreds or thousands of data

points from many stack layers per second
- Data collected from one system can be very large (~1 GB per hour:

200 metrics / 10 servers / 50 VMs)
- Multiple layers of dependent management systems (Openstack,

OpenVswitch, K8S, Mesos, Linux, Cobbler, Puppet, Ansible etc.)

Introducing Snap: Open-source Telemetry
Process PublishCollect

$ go get github.com/intelsdi-x/snap

http://snap-telemetry.io/

COLLECTING TELEMETRY

CPU – Key metrics

- L2,	L3	Cache	usage
- Amount	of	time	that	spent	performing	various	kinds	of	work	
(normal	and	nice	for	user)

- Amount	of	time	waiting	for	i/o	to	complete
- Amount	of	time	servicing	interrupts	and	softirqs
- Load	Avg
- CPU	Power	Consumption,	Temperature	

https://github.com/intelsdi-x/snap-
plugin-collector-cpu

https://github.com/intelsdi-x/snap-
plugin-collector-pcm

Interconnections - CPU

CPU

Cache

Memory

Interconnect

Disk
controller

Disk

Raid	Controller

D1 D2

Network	
Controller

Memory – Key metrics

- Memory	Active
- Memory	Swap	
- Memory	Total
- Swap	In,	Swap	Out
- Huge	Pages	
- Memory	Hardware	Corrupted	(only	ECC	memory)	
- Memory	Power	Consumption,	Temperature	

https://github.com/intelsdi-x/snap-
plugin-collector-meminfo

https://github.com/intelsdi-x/snap-
plugin-collector-psutil

Interconnections - Memory

CPU

Cache

Memory

Interconnect

Disk
controller

Disk

Raid	Controller

D1 D2

Network	
Controller

Disk – Key metrics

- Merged	Read,	Merged	Write
- Time	Read,	Time	Write
- I/O	Time
- Weighted	I/O	Time	
- Pending	OPS
- Low	level	SMART	statistics	

https://github.com/intelsdi-x/snap-
plugin-collector-disk

https://github.com/intelsdi-x/snap-
plugin-collector-iostat

Interconnections - Disk

CPU

Cache

Memory

Interconnect

Disk
controller

Disk

Raid	Controller

D1 D2

Network	
Controller

Network Interface – Key metrics

- Bytes	In,	Bytes	Out
- Packets	In,	Packets	Out
- Errors	In,	Errors	Out
- Drop	In,	Drop	Out
- Link	errors

https://github.com/intelsdi-x/snap-
plugin-collector-interface

https://github.com/intelsdi-x/snap-
plugin-collector-ethtool

Interconnections – Network Interfaces

CPU

Cache

Memory

Interconnect

Disk
controller

Disk

Raid	Controller

D1 D2

Network	
Controller

COLLECTING FROM OS (Linux)

Processes – Key metrics

- Memory	usage	VM,	RSS
- Time	spend	in	user	space
- Cache	misses	
- Disk	write	and	read
- Sum	of	the	zombie,	dead	and	waiting	processes

https://github.com/intelsdi-x/snap-
plugin-collector-processes

https://github.com/intelsdi-x/snap-
plugin-collector-perf

File system – Key metrics

- Space	used
- Space	free
- Space	reserved
- File	system	Errors	from	syslog	

https://github.com/intelsdi-x/snap-
plugin-collector-df

COLLECTING FROM THE CLOUD

Cloud Availability

- Logs	from	various	Cloud	Services	(Errors,	Warnings)
- Number	of	requests	per	service,	user,	tenant
- Cloud	Component	availability	(Nova	Compute,	Openvswitch,	
K8S	Pods)

- Micro	benchmarking	to	test	reliability	of	the	cloud		

https://github.com/intelsdi-x/snap-
plugin-processor-logs-openstack

https://github.com/intelsdi-x/kubesnap

Network and Cloud Storage Latency

- Latency	between	interfaces
- Latency	between	external	cloud	components
- Latency	from	client	to	the	SAN	storage
- Time	spent	on	Openvswitchprocess	per	compute	node
- Number	of	flows	(OpenFlow)	per	interface

https://github.com/raintank/snap-
plugin-collector-ping

Additional hardware / software

- FPGAs	(Temperature,	Power,	Utilization)
- Accelerators	(Temperature,	Power,	Utilization)
- Sensors	(Availability)

PROCESSING TELEMETRY

28

USE method

The	Utilization	Saturation	and	Errors	(USE)	Method	is	a	methodology	
for	analyzing	the	performance	of	any	system.	It	directs	the	

construction	of	a	checklist,	which	for	server	analysis	can	be	used	to	
quickly	identify	resource	bottlenecks	or	errors

source:	 http://brendangregg.com

https://github.com/intelsdi-x/snap-
plugin-collector-use

USE method - metrics
Name Formula Threshold

Compute utilization 100 - idle 0 - 100 %

Compute saturation load1/number of cpus 0 - max

Disk utilization iostat % util 0 - 100 %

Disk saturation iostat avg-queue-size 0 - max

Memory utilization memory – memory used 0 - 100 %

Memory saturation memory swap in/ memory swap
out

0 - max

Network utilization (tx + rcv bytes)/ bandwidth 0 - 100 %

Network Saturation (tx + rcv overrun) - # of pkts % 0 - max

Anomaly Detection

In	data	mining,	anomaly	detection	(also	outlier	detection)	is	the	
identification	of	items,	events	or	observations	which	do	not	conform	

to	an	expected	pattern	or	other	items	in	a	dataset.
source:	http://www.wikipedia.com

Anomaly Detection

Typically	the	anomalous	items	will	translate	to	some	kind	of	problem	
such	as	software	misconfiguration,	attack,	unexpected	software	

behavior,	hardware	or	software	errors.	

Anomaly Detection – Tukey Method

The	intention	of	this	method	is	to	reduce	the	amount	of	data	that	
needs	to	be	transmitted	without	compromising	the	information	that	
can	be	gained	from	potential	usages	of	the	data

https://github.com/intelsdi-x/snap-
plugin-processor-anomalydetection

Anomaly Detection – ESD

Seasonal	Hybrid	ESD	(S-H-ESD)	builds	upon	the	Generalized	ESD	test	
for	detecting	anomalies.	Note	that	S-H-ESD	can	be	used	to	detect	both	
global	as	well	as	local	anomalies.	This	is	achieved	by	employing	time	
series	decomposition	and	using	robust	statistical	metrics,	viz.,	median	
together	with	ESD.	

https://github.com/intelsdi-x/snap-
plugin-processor-anomalydetection

Anomaly Detection – Use Case

8	x	less	
samples

data	shape	
preserved

PUTTING IT ALL TOGETHER

TSDBs

TSDBs	are	databases	that	are	optimized	for time	series	data

Telemetry Backend - TSDB

• InfluxDB - https://www.influxdata.com (used	in	Mikelangelo)
• KairosDB - https://kairosdb.github.io
• OpenTSDB - http://opentsdb.net/
• Graphite	- https://github.com/graphite-project/graphite-web

Data Visualization

• Grafana – Monitoring	visualization	- https://grafana.com/
• Kibana – Logs	visualization	
https://www.elastic.co/guide/en/kibana/current/index.html

• Flamegraphs – visualization	of	profile	software	
https://github.com/brendangregg/FlameGraph

• Heatmap - http://www.gnuplot.info/

Data visualization – Monitoring
visualization

CLOSING THE LOOP

Closing the loop

• Enhance	Cloud	Schedulers	– use	aggregated	metrics	like	
Utilization,	Saturation	and	Errors	for	Weighter on	Openstack
and	K8S

• Apply	Machine	Learning	algorithms	on	the	datasets	to	find	key	
metrics	for	the	workloads

• Profile	application	- then	redeploy	using	Continuous	
Integration

CLOUD telemetry - DEMO

• Mikelangelo
• https://www.mikelangelo-project.eu/
• Snap
• http://intelsdi-x.github.io/snap/ – start	here!
• https://github.com/intelsdi-x/snap – code,	suggest,	contribute
• https://medium.com/intel-sdi – technical insights	and	articles
• https://intelsdi-x.herokuapp.com/– chat	with	snap	developers
• https://vimeo.com/intelsdi/videos – see	it	in	action

More Information

Q&A

marcin.spoczynski@intel.com
@sandlbn
github.com/sandlbn

