
Communicating
Anonymously via E-Mail

May 6, 2017

What is anonymity?

● In colloquial use, "anonymous" is used to describe situations where the
acting person's name is unknown. [1]

● Anonymity is seen as a technique, or a way of realizing, certain other
values, such as privacy, or liberty.

● An important example for anonymity being not only protected, but
enforced by law is probably the vote in free elections. There are also
various situations in which a person might choose to withhold their
identity: whistleblowing, breaking the law, charity.

● Anonymity is always within a set. In mathematics, in reference to an
arbitrary element (e.g., a human, an object, a computer), within a
well-defined set (called the "anonymity set"), "anonymity" of that element
refers to the property of that element of not being identifiable within this set.
If it is not identifiable, then the element is said to be "anonymous."

● Anonymity can be expressed in degrees. There were two papers that put
forth the idea of using entropy as the basis for formally measuring
anonymity: "Towards an Information Theoretic Metric for Anonymity", and
"Towards Measuring Anonymity".

● Anonymity is not just hiding, but also deniability.

E-Mail Anonymity Issues

Centralized in practice

Plain text by default

Forgery possible

● GPG for Encryption

● Run your own server for
Decentralization

● SPF/Sender ID/DKIM for

Forgery

“In 1997, at the dawn of the internet’s potential, the working
hypothesis for privacy enhancing technology was simple:
we’d develop really flexible power tools for ourselves, and
then teach everyone to be like us. Everyone sending messages
to each other would just need to understand the basic
principles of cryptography…”

“...I was excited about the future, and I dreamed of a
world where everyone would install GPG. Now I’m still
excited about the future, but I dream of a world where I
can uninstall it.” [3]

-Moxie Marlinspike

“Although their use is increasing, estimates vary widely as
to what percentage of emails have no form of domain
authentication: from 8.6% to "almost half", but to
effectively stop forged email being delivered, receiving
mail systems also need to be configured to check this
authentication.” [2]

“...e-mail isn't a very good system for secure communications.
You're wholly dependent on other people doing the right thing and
sending you properly encrypted mail.” [4]

-Peter Bright and Dan Goodin

"I don't have to listen to your
phone calls to know what you're
doing. If I know every single
phone call that you made, I am
able to determine every single
person you talked to. I can get a
pattern about your life that is
very, very intrusive.”

-Joe Biden

Bitmessage: A Peer‐to‐Peer Message
Authentication and Delivery System

“We propose a system that allows users to securely send and receive
messages, and subscribe to broadcast messages, using a trustless
decentralized peer‐to‐peer protocol. Users need not exchange any data beyond
a relatively short (around 36 character) address to ensure security and they
need not have any concept of public or private keys to use the system. It is also
designed to mask non‐content data, like the sender and receiver of messages,
from those not involved in the communication.” [5]

-Jonathan Warren

Authentication Against Forgery
● Users exchange a hash of a public key that also functions as the user’s

address. Encoded with base58 and prepended with recognizable
characters (like BM for Bitmessage), similar to Bitcoin, an example
address would be:

BM‐2nTX1KchxgnmHvy9ntCN9r7sgKTraxczzyE

● This address format is superior to email in that it guarantees that a
message from a particular user or organization did, in fact, come from
them. The sender of a message cannot be spoofed.

Anonymized Message Transfer
● The transfer mechanism is similar to Bitcoin’s transaction and block

transfer system but with a proof‐of‐work for each message.

● All users receive all messages. They are responsible for attempting to
decode each message with each of their private keys to see whether the
message is bound for them.

● If you send and receive all messages, there’s no way to know which, if any,
messages were meant for you!

Scalability
● If all nodes receive all messages, it is

natural to be concerned about the
system’s scalability. After the number of
messages being sent through the
Bitmessage network reaches a certain
threshold, nodes begin to self‐segregate
into large clusters or streams.

● A Bitmessage client should use a negligible amount of hard drive
space and processing power. Once it starts exceeding comfortable
thresholds, new addresses should be created in child streams and the
nodes creating those addresses should consider themselves to be
members of that stream and behave as such.

Usability vs Security

Let’s just take our favorite e-mail clients and
bridge them to use Bitmessage as a transport!

E-Mail over Bitmessage
The Bitmessage reference client already provides an api server to send and
receive messages. Scripts that hit the API via RPC + cron give us an up to date
maildir of messages and redirect incoming e-mails from SMTP to the
Bitmessage network.

Reference Client: https://bitmessage.org/wiki/Main_Page
Daemon Mode: https://bitmessage.org/wiki/Daemon
API Reference: https://bitmessage.org/wiki/API_Reference
API Scripts: https://github.com/alexmat/bitmessage-api-scripts

https://bitmessage.org/wiki/Main_Page
https://bitmessage.org/wiki/Daemon
https://bitmessage.org/wiki/API_Reference
https://github.com/alexmat/bitmessage-api-scripts

Using Existing Servers
● Any existing IMAP server can sync clients with your maildir. Here’s my

recommendation: http://wiki.dovecot.org/QuickConfiguration
● SMTP is a bit trickier, but thanks to EmailRelay, we can preprocess emails

as they come in and feed them to our scripts.
http://emailrelay.sourceforge.net/

● Here’s the command I’m using:
○ emailrelay --as-proxy localhost:smtp --port

$EMAILRELAYPORT --server-tls $CERTPATH --remote-clients
--user $LOWPRIV --pid-file $PID --filter
$MAILTOBMSGSCRIPT

http://wiki.dovecot.org/QuickConfiguration
http://emailrelay.sourceforge.net/
http://emailrelay.sourceforge.net/

Issues With This Setup

● You need a server. However, Raspberry Pi’s and old
laptops are cheapish.

● Setup is not trivial. This could be mitigated by
distributing a live distro or container that’s mostly plug
and play. Or use a hosted service, for example:
https://bitmessage.ch/

● Keys are stored on the server, which means you need
to run it yourself or trust someone.

Vice Versa: Bitmessage over E-mail
Mailchuck.com is a relay between email and Bitmessage, combining the
privacy and security of a local Bitmessage client and an email account.

Mailchuck allows you to use a Bitmessage client and access the “email
network” (send/receive messages with email users), and Mailchuck does not
store them other than for transport purposes.

https://github.com/PeterSurda/bitmessage-email-gateway

DEMO! Msg me!

BM-2cU1wivGz8Gsc5HighLS3vbAAJ4DrDJLPR

References
[1] https://en.wikipedia.org/wiki/Anonymity

[2] https://en.wikipedia.org/wiki/Email_spoofing

[3] http://www.thoughtcrime.org/blog/gpg-and-me/

[4] http://arstechnica.com/security/2013/06/encrypted-e-mail-how-much-annoyance-will-you-tolerate-to-keep-the-nsa-away/

[5] https://bitmessage.org/bitmessage.pdf

https://en.wikipedia.org/wiki/Anonymity
http://en.wikipedia.org/wiki/Email_spoofing
http://www.thoughtcrime.org/blog/gpg-and-me/
http://arstechnica.com/security/2013/06/encrypted-e-mail-how-much-annoyance-will-you-tolerate-to-keep-the-nsa-away/
https://bitmessage.org/bitmessage.pdf

