
Bash Yellow-Belt Class
Improve Your Command over Your

Computer

About You

New to Linux
OSX user, wondering what’s so great about Terminal.app
Frustrated Windows cmd.exe user

Make a better impression:
Pair-programming
Screen-sharing

About Me

Eric Promislow @ericpromislow

Got my first Unix account in the 1980s
Found a AT&T “Programmers’ Workbench
Guide” for free at a flea market
You could read the whole thing in a few hours.
`man bash` returns almost as much text now

Overqualified

Underqualified

In 45 minutes, hopefully

The Basics

ls
more & less (export LESS=-EiXm)
cd
cat
man
du

Notation

Assume the prompt is ‘$’. Commands you
type look like this, and are in red:
$ echo hello computer # Which star trek movie?

Computer responses are in blue:

hello computer

Pipes

$ man bash | wc -l
4890
$ i=$(!!)
$ echo $((i / 54))
106

Directories: where files live

- and everything is a file
- including other directories
~/ - your home directory
~jane - Jane’s home directory
$ cd # cd ~
$ pwd # echo current directory
$ echo $PWD # Same as pwd

Directories

$ pushd DIR # Like cd DIR, but…
$ popd # Goes back to top of stack
$ cd - # Go to previous dir
$ cd $OLDDIR # Same. What if no OLDDIR?

Matching names

* # Match all files
.* # Match files that start with a '.'
.??* # Match dot files, not . and .. (nor .x ...)
*.[td][xo][tc] # Match *.txt and *.doc (and *.toc)

Name expansion

These force expansions, even if no match
$ echo abc.{doc,txt} # abc.doc abc.txt
$ mv abc.{doc,txt} # mv abc.doc abc.txt

$ Sequence instructions: ${1..10}
1 2 3 4 5 6 7 8 9 10

History: More than pressing up-arrow

History commands: !

$!! # Run previous command
$ echo abc
abc
$!!
echo abc
abc

History commands: !

$!! # Run previous command
$!-2 # Run command before previous
$ echo abc
$ echo def
$!-2
echo abc
abc

History commands: !

$!! # Run previous command
$!-2 # Run command before previous
$!95 # Run command #95

Where does that ‘95’ come from?
$ history

History commands: !

$!! # Run previous command
$!-2 # Run command before previous
$!95 # Run command #95
$ history | tail -10 # list last 10 commands
$!pu # Run last command starting with 'pu'
$!?abc # Run last command containing 'pu'

History: :p -- Are you sure?

$ echo abc
abc
$!!:p
echo abc
$

History Arguments

!^ (“Bang caret”) # First word
!$ (“Bang dollar”) # Last argument
!* # All arguments
!!:3-5 # Select args 3 - 5 (start with 1)
!!:0 # The previous command only

History: picking apart paths

Say your last argument is a full path, like
/home/eric/pictures/vacation.png
!$:h - head: /home/eric/pictures
!$:t - tail: vacation.png
!$:r - root: /home/eric/pictures/vacation
!$:e - extension: png

History: editing

$ ehco hello
ehco: command not found
$ ^hc^ch
echo abc
abc
$ ^bc
echo a
a

History: up-arrow

It’s there. And it’s actually using emacs
bindings
$ set -o vi # Use vi-keys (‘ESC+k’ to move up)
$ set -o emacs # Back to default

Looping

$ for x in *.txt
> do
> commands...
> done

Looping example: fixing file names

for i in *.WAV ; do
 x=`echo $i | tr A-Z a-z`
 mv "$i" "$x"
done

Try
 echo mv "$i" "$x"

Shell-scripting sidenote: if

if TEST ; then
 COMMANDS
elif TEST ; then
 COMMANDS
else
 COMMAND
fi

Shell-scripting sidenote: case

case $# in
 0) echo "no args" ;;
 1) echo "one arg: $1" ;;
) echo "Lots of args: $" ;;
esac

Rolling your own: aliases

$ alias hi10="history | tail -10"
$ hi10
 1 echo abc
 2 echo abc def
...
Best when there are no arguments

Rolling your own: scripts

#!/bin/sh
echo -n 'What is your name? '
read x
echo "Hello, $x. Wouldn't you rather be" \
 "playing outside or reading a" \
 "good book than telling a computer" \
 "your name?"

Scripts: Variables

NAME=value
For some reason names are often all-caps
Make vars available to invoked programs:
export NAME=value
quotes matter
"... $NAME ..." => ... value ...
'... $NAME ...' => ... $NAME ...

Scripts: arguments

$1 ... first arg, etc.
$* : All arguments
"$@" : All args, doesn't get hung up on spaces
Always use "$@" unless you're sure no file has
spaces.
$ shift # $1=$2, $2=$1, drop $<last>

Source and the environment

$ bash SCRIPT # doesn't change environment
$./SCRIPT # still doesn't
$. SCRIPT # does change it
VARIABLE=VALUE
alias ...

Shell Functions

Often better than aliases and shell-scripts
Different in /bin/bash and /bin/sh

function hello() {
 echo "Hello, $1"
}
$ hello Hal
Hello, Hal

Shell functions: learn more by example

https://github.com/ericpromislow/ddirs
$ pwd
/home/ericp/lab/rails/cronkite
$ d1
$ cd ~/svn/apps/kd
$ d2
$ cd1
/home/ericp/lab/rails/cronkite

More on shell scripts

#!/bin/sh
- first line
- chmod a+x
- make sure file is in PATH
- In current dir:
$./test.sh # Not 'test.sh' with no leading "./"

As promised

Where to go from here

$ man bash
Read existing shell scripts more comfortably
Kick ass during screenshares
Remember !!:p

Don't blame me if you delete all your files

